【題目】如圖,中,,,于點(diǎn),點(diǎn)是線段的一個動點(diǎn),則的最小值是________

【答案】

【解析】

EGACGBHACH,由tanA==3,設(shè)AD=a,CD=3a,利用勾股定理構(gòu)建方程求出a,再證明EG=EC,推出BE+EC=BE+EG,由垂線段最短即可解決問題.

解:如圖,作EGACGBHACH,

CDAB
∴∠ADC=90°,
tanA==3,設(shè)AD=a,CD=3a

AB=AC=10,
則有:102=a2+9a2,
a2=10
a=(舍),

CD=3a=,

AB=AC,CDAB,BHAC,
BH=CD=

∵∠ECG=ACD,∠CGE=CDA,
sinECG===,

EG=EC,

BE+EC=BE+EG,

BE+EG≥BH,

BE+EC≥,

BE+EC的最小值為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了多少名學(xué)生?在扇形統(tǒng)計圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?

(4)某天甲、乙兩名同學(xué)都想從微信"、""、電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC45°,∠ACB30°,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)得到△AB1C1,當(dāng)點(diǎn)C1、B1、C三點(diǎn)共線時,旋轉(zhuǎn)角為α,連接BB1,交AC于點(diǎn)D.下列結(jié)論:AC1C為等腰三角形;AB1D∽△BCD;③α75°;CACB1,其中正確的是(  )

A.①③④B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l1,l2,l3l4是同一平面內(nèi)的一組平行線.

1)如圖1,正方形ABCD4個頂點(diǎn)都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點(diǎn)A,點(diǎn)C分別在直線l1l4上,求正方形的面積.

2)如圖2,正方形ABCD4個頂點(diǎn)分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為h1,h2,h3

①求證:h1h3

②設(shè)正方形ABCD的面積為S,求證:S2h12+2h1h2+h22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)上,點(diǎn)是弧的中點(diǎn),于點(diǎn),點(diǎn)延長線上一點(diǎn),連接,且

1)試判斷直線的位置關(guān)系,并說明理由;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像經(jīng)過的三個頂點(diǎn),其中,

1)求點(diǎn)的坐標(biāo);

2)在第三象限存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,求滿足條件的點(diǎn)的坐標(biāo);

3)在(2)的條件下,能否將拋物線平移后經(jīng)過兩點(diǎn),若能求出平移后經(jīng)過兩點(diǎn)的拋物線的表達(dá)式,并寫出平移過程.若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形 ABCD 中,AD / /BC ,AD CD ,M 為腰 AB 上一動點(diǎn),聯(lián)結(jié) MC 、MD AD 10, BC 15 , cot B 求:

(1)線段CD 的長.

(2)設(shè)線段 BM 的長為 x ,△CDM的面積為 y ,求 y 關(guān)于 x 的函數(shù)解析式,并寫出它的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB中點(diǎn),過點(diǎn)DDF//BCAC于點(diǎn)E,且DE=EF,連接AF,CF,CD

1)求證:四邊形ADCF為平行四邊形;

2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠為貫徹落實(shí)綠水青山就是金山銀山的發(fā)展理念,投資組建了日廢水處理量為m噸的廢水處理車間,對該廠工業(yè)廢水進(jìn)行無害化處理. 但隨著工廠生產(chǎn)規(guī)模的擴(kuò)大,該車間經(jīng)常無法完成當(dāng)天工業(yè)廢水的處理任務(wù),需要將超出日廢水處理量的廢水交給第三方企業(yè)處理. 已知該車間處理廢水,每天需固定成本30元,并且每處理一噸廢水還需其他費(fèi)用8元;將廢水交給第三方企業(yè)處理,每噸需支付12.根據(jù)記錄,521日,該廠產(chǎn)生工業(yè)廢水35噸,共花費(fèi)廢水處理費(fèi)370.

(1)求該車間的日廢水處理量m;

(2)為實(shí)現(xiàn)可持續(xù)發(fā)展,走綠色發(fā)展之路,工廠合理控制了生產(chǎn)規(guī)模,使得每天廢水處理的平均費(fèi)用不超過10/噸,試計算該廠一天產(chǎn)生的工業(yè)廢水量的范圍.

查看答案和解析>>

同步練習(xí)冊答案