【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,內(nèi)切圓O與邊AB、BC、CA分別相切于點D、E、F,則∠DEF的度數(shù)為°.

【答案】75
【解析】解:連接DO,F(xiàn)O,
∵在Rt△ABC中,∠C=90°,∠B=60°
∴∠A=30°,
∵內(nèi)切圓O與邊AB、BC、CA分別相切于點D、E、F,
∴∠ODA=∠OFA=90°,
∴∠DOF=150°,
∴∠DEF的度數(shù)為75°.
所以答案是:75.
【考點精析】掌握圓周角定理和三角形的內(nèi)切圓與內(nèi)心是解答本題的根本,需要知道頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校開展的“書香校園”活動受到同學們的廣泛關注,為了解全校學生課外閱讀的情況,隨機調(diào)查了部分學生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計圖表.

學生借閱圖書的次數(shù)統(tǒng)計表:

借閱圖書的次數(shù)

次及以上

人數(shù)

請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

1 ;

2)該調(diào)查統(tǒng)計數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;

3)若該校共有名學生,根據(jù)調(diào)查結果,估計該校學生在一周內(nèi)借閱圖書次及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點P是Rt△ABC斜邊AB上一動點(不與A、B重合),分別過A、B向直線CP作垂線,垂足分別為E、F、Q為斜邊AB的中點.
(1)如圖1,當點P與點Q重合時,AE與BF的位置關系,QE與QF的數(shù)量關系.
(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關系,并給予證明;
(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示,點A′的坐標是(﹣22),現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.

1)請畫出平移后的△ABC′(不寫畫法);

2)并直接寫出點B′、C′的坐標:B′(   )、C′(   );

3)若△ABC內(nèi)部一點P的坐標為(a,b),則點P的對應點P′的坐標是(    ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,O是AB上一點,⊙O與BC相切于點E,交AB于點F,連接AE,若AF=2BF,則∠CAE的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明

如圖,端點為P的兩條射線分別交兩直線l1、l2A、C、B、D四點,已知∠PBA=PDC,l=PCD,求證:∠2+3=180°.

證明:∵∠PBA=PDC(   

   (同位角相等,兩直線平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代換)

∴PC//BF(內(nèi)錯角相等,兩直線平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線PQMN,點A、B分別在直線MN、PQ上,射線AM繞點A5°/秒的速度按順時針開始旋轉(zhuǎn),旋轉(zhuǎn)至與AN(或AM)重合后便立即回轉(zhuǎn),射線BQ繞點B2°/秒的速度按順時針開始旋轉(zhuǎn),旋轉(zhuǎn)至與BP重合后便停止轉(zhuǎn)動,旋轉(zhuǎn)后的射線分別記為AM'BQ'

1)若射線BQ先轉(zhuǎn)動30秒,射線AM才開始轉(zhuǎn)動,在射線AM第一次到達AN之前,射線AM轉(zhuǎn)動幾秒后AM'BQ';

2)若射線AMBQ同時轉(zhuǎn)動t秒,在射線BQ停止轉(zhuǎn)動之前,記射線AM'BQ'交于點H,若∠AHB90°,求t的值;

3)射線AM,BQ同時轉(zhuǎn)動,在射線AM第一次到達AN之前,記射線AM'BQ'交于點K,過KKCAKPQ于點C,如圖2,若∠BAN30°,則在旋轉(zhuǎn)過程中,∠BAK與∠BKC有何數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛轎車從甲城駛往乙城,同時一輛卡車從乙城駛往甲城,兩車沿相同路線勻速行駛,轎車到達乙城停留一段時間后,按原路原速返回甲城;卡車到達甲城比轎車返回甲城早0.5小時,轎車比卡車每小時多行駛60千米,兩車到達甲城弧均停止行駛,兩車之間的路程y(千米)與轎車行駛時間t(小時)的函數(shù)圖象如圖所示,請結合圖象提供的信息解答下列問題:
(1)請直接寫出甲城和乙城之間的路程,并求出轎車和卡車的速度;
(2)求轎車在乙城停留的時間,并直接寫出點D的坐標;
(3)請直接寫出轎車從乙城返回甲城過程中離甲城的路程s(千米)與轎車行駛時間t(小時)之間的函數(shù)關系式(不要求寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是(
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

同步練習冊答案