【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標(biāo)系,格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))的坐標(biāo)分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).
(1)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△DEF,畫(huà)出△DEF;
(2)以O為位似中心,將△ABC放大為原來(lái)的2倍,在網(wǎng)格內(nèi)畫(huà)出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點(diǎn),這次變換后的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為 .
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析,(﹣2x,﹣2y).
【解析】
(1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫(huà)出點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)D、E、F,即可得到△DEF;
(2)先根據(jù)位似中心的位置以及放大的倍數(shù),畫(huà)出原三角形各頂點(diǎn)的對(duì)應(yīng)頂點(diǎn),再順次連接各頂點(diǎn),得到△A1B1C1,根據(jù)△A1B1C1結(jié)合位似的性質(zhì)即可得P1的坐標(biāo).
(1)如圖所示,△DEF即為所求;
(2)如圖所示,△A1B1C1即為所求,
這次變換后的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為(﹣2x,﹣2y),
故答案為:(﹣2x,﹣2y).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是的直徑,點(diǎn)C、D在上,且AD平分,過(guò)點(diǎn)D作AC的垂線,與AC的延長(zhǎng)線相交于E,與AB的延長(zhǎng)線相交于點(diǎn)F,G為AB的下半圓弧的中點(diǎn),DG交AB于H,連接DB、GB.
證明EF是的切線;
求證:;
已知圓的半徑,,求GH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)在第四象限,頂點(diǎn)到x軸的距離為3,拋物線與x軸交于原點(diǎn)O(0,0)及點(diǎn)A,且OA=4. (1)求該拋物線的解析式; (2)若線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°到OA′,試判斷點(diǎn)A′是否在該拋物線上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾(gè)領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢(mèng),現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式:
收費(fèi)方式 | 月使用費(fèi)/元 | 包時(shí)上網(wǎng)時(shí)間/h | 超時(shí)費(fèi)/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
設(shè)每月上網(wǎng)學(xué)習(xí)時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA,yB.
(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請(qǐng)根據(jù)圖象填空:m= ;n=
(2)寫(xiě)出yA與x之間的函數(shù)關(guān)系式.
(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c 交 x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).
(1)用含 a 的代數(shù)式表示 c.
(2)當(dāng) a=時(shí),求 x 為何值時(shí) y 取得最小值,并求出 y 的最小值.
(3)當(dāng) a=時(shí),求 0≤x≤6 時(shí) y 的取值范圍.
(4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時(shí),直接寫(xiě)出 a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)為正的邊上一點(diǎn)(不與點(diǎn)重合),點(diǎn)分別在邊上,且.
(1)求證:;
(2)設(shè),的面積為,的面積為,求(用含的式子表示);
(3)如圖2,若點(diǎn)為邊的中點(diǎn),求證: .
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2平移后經(jīng)過(guò)點(diǎn)A(﹣1,0)、B(4,0),且平移后的拋物線與y軸交于點(diǎn)C(如圖).
(1)求平移后的拋物線的表達(dá)式;
(2)如果點(diǎn)D在線段CB上,且CD=,求∠CAD的正弦值;
(3)點(diǎn)E在y軸上且位于點(diǎn)C的上方,點(diǎn)P在直線BC上,點(diǎn)Q在平移后的拋物線上,如果四邊形ECPQ是菱形,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l的解析式是y=x-4,并且與x軸、y軸分別交于A,B兩點(diǎn).一個(gè)半徑為1.5的☉C,圓心C從點(diǎn)(0,1.5)開(kāi)始以每秒移動(dòng)0.5個(gè)單位長(zhǎng)度的速度沿著y軸向下運(yùn)動(dòng),當(dāng)☉C與直線l相切時(shí),則該圓運(yùn)動(dòng)的時(shí)間為( )
A. 3 s或6 sB. 6 s或10 sC. 3 s或16 sD. 6 s或16 s
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com