【題目】如圖,長方形ABCD中,M為CD中點(diǎn),分別以點(diǎn)B、M為圓心,以BC長、MC長為半徑畫弧,兩弧相交于點(diǎn)P.若∠PMC=110°,則∠BPC的度數(shù)為( )
A.35°
B.45°
C.55°
D.65°
【答案】C
【解析】解:∵以B、M為圓心,分別以BC長、MC長為半徑的兩弧相交于P點(diǎn), ∴BP=BC,MP=MC,
∵∠PMC=110°,
∴∠MCP= (180°﹣∠PMC)= (180°﹣110°)=35°,
在長方形ABCD中,∠BCD=90°,
∴∠BCP=90°﹣∠MCP=90°﹣35°=55°,
∴∠BCP=∠BPC=55°.
故選C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解線段垂直平分線的性質(zhì)(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等),還要掌握矩形的性質(zhì)(矩形的四個(gè)角都是直角,矩形的對角線相等)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是;
(2)扇形統(tǒng)計(jì)圖中,“電視”所對應(yīng)的圓心角的度數(shù)是;
(3)請補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有80萬人,請你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、第四象限內(nèi)的A,B兩點(diǎn),與y軸交于C點(diǎn),過A作AH⊥y軸,垂足為H,AH=4,tan∠AOH= ,點(diǎn)B的坐標(biāo)為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AB=AC,D為△ABC內(nèi)一點(diǎn),AD=4,如果把△ABD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使AB與AC重合,求點(diǎn)D運(yùn)動(dòng)的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的頂點(diǎn)坐標(biāo)為A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,點(diǎn)B′、C′分別是點(diǎn)B、C的對應(yīng)點(diǎn).
(1)求過點(diǎn)B′的反比例函數(shù)解析式;
(2)求線段CC′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象相交于點(diǎn)A(﹣2,1),點(diǎn)B(1,n).
(1)求此一次函數(shù)和反比例函數(shù)的解析式;
(2)請直接寫出滿足不等式kx+b﹣ <0的解集;
(3)在平面直角坐標(biāo)系的第二象限內(nèi)邊長為1的正方形EFDG的邊均平行于坐標(biāo)軸,若點(diǎn)E(﹣a,a),如圖,當(dāng)曲線y= (x<0)與此正方形的邊有交點(diǎn)時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個(gè)方格的邊長均為1個(gè)單位長度).
(1)請畫出△A1B1C1 , 使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2 , 并直接寫出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2+bx的圖象的對稱軸是經(jīng)過點(diǎn)(2,0)且平行于y軸的直線,則關(guān)于x的方程x2+bx=5的解為( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿AB向點(diǎn)B勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿BA向點(diǎn)A勻速運(yùn)動(dòng),過線段MN的中點(diǎn)G作邊AB的垂線,垂足為點(diǎn)G,交△ABC的另一邊于點(diǎn)P,連接PM,PN,當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)A時(shí),M,N兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=秒時(shí),動(dòng)點(diǎn)M,N相遇
(2)設(shè)△PMN的面積為S,求S與t之間的函數(shù)關(guān)系式
(3)取線段PM的中點(diǎn)K,連接KA,KC,在整個(gè)運(yùn)動(dòng)過程中,△KAC的面積是否變化?若變化,直接寫出它的最大值和最小值;若不變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com