【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連接AE、DE、DC。

1)求證:△ABE≌△CBD;

2)若∠CAE=30°,求∠BCD的度數(shù)。

【答案】1)見解析;(215°.

【解析】

1)由∠ABC為直角,得到∠CBD也為直角,得到一對(duì)角相等,再由AB=CBBE=BD,利用SAS即可得到三角形ABE與三角形CBD全等,得證;
2)由AB=BC,且∠ABC為直角,得到三角形ABC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到∠BAC45°,由∠CAB-CAE求出∠BAE的度數(shù),根據(jù)全等三角形的對(duì)應(yīng)角相等得到∠BAE=BCD,即可求出∠BCD的度數(shù).

1)證明:∵∠ABC=90°,DAB延長(zhǎng)線上一點(diǎn),
∴∠ABE=CBD=90°
ABECBD中,
,
∴△ABE≌△CBDSAS);
2)解:∵AB=CB,∠ABC=90°,
∴△ABC為等腰直角三角形,
∴∠CAB=45°,
又∵∠CAE=30°
∴∠BAE=CAB-CAE=15°
∵△ABE≌△CBD,
∴∠BCD=BAE=15°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在班上組織的元旦迎新晚會(huì)中,小麗和小芳都想當(dāng)節(jié)目主持人,但現(xiàn)在只有一個(gè)名額.小芳想出了一個(gè)用游戲來(lái)選人的辦法,她將一個(gè)轉(zhuǎn)盤平均分成份,如圖所示.游戲規(guī)定:隨意轉(zhuǎn)動(dòng)轉(zhuǎn)盤,若指針指到偶數(shù),則小麗去;若指針指到奇數(shù),則小芳去.

指針指到偶數(shù)的概率是多少?指針指到奇數(shù)的概率是多少?

這個(gè)游戲?qū)﹄p方公平嗎?為什么?

若游戲不公平,請(qǐng)你修改轉(zhuǎn)盤中的數(shù)字,使得游戲?qū)﹄p方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張形狀、大小相同但畫面不同的風(fēng)景圖片全部從中間剪斷,然后將四張形狀相同的小圖片混合在一起.現(xiàn)從這四張圖片中隨機(jī)的一次抽出張.

請(qǐng)用列表或畫樹狀圖的方法表示出上述實(shí)驗(yàn)所有可能結(jié)果.

求這張圖片恰好組成一張完整風(fēng)景圖概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=30°,BC=2.ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)n度后得到EDC,此時(shí)點(diǎn)D落在AB邊上,斜邊DEAC于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為(

A. 30,2 B. 60,2 C. 60, D. 60,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等邊△ABC內(nèi)一點(diǎn),且PA=6,PC=8,PB=10,若△APB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,得到△AP′C,則∠APC=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC

⑴求∠ECD的度數(shù);

⑵若CE=5,求CB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)某賓館準(zhǔn)備購(gòu)進(jìn)一批換氣扇,從電器商場(chǎng)了解到:一臺(tái)A型換氣扇和三臺(tái)B型換氣扇共需275元;三臺(tái)A型換氣扇和二臺(tái)B型換氣扇共需300元.

(1)求一臺(tái)A型換氣扇和一臺(tái)B型換氣扇的售價(jià)各是多少元;

(2)若該賓館準(zhǔn)備同時(shí)購(gòu)進(jìn)這兩種型號(hào)的換氣扇共40臺(tái)并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)均為的正和正原來(lái)完全重合.如圖,現(xiàn)保持正不動(dòng),使正繞兩個(gè)正三角形的公共中心點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),設(shè)旋轉(zhuǎn)角度為.(注:除第題中的第②問(wèn),其余各問(wèn)只要直接給出結(jié)果即可)

當(dāng)多少時(shí),正與正出現(xiàn)旋轉(zhuǎn)過(guò)程中的第一次完全重合?

當(dāng)時(shí),要使正與正重疊部分面積最小,可以取哪些角度?

旋轉(zhuǎn)時(shí),如圖,正和正始終具有公共的外接圓.當(dāng)時(shí),記正與正重疊部分為六邊形.當(dāng)在這個(gè)范圍內(nèi)變化時(shí),

①求面積相應(yīng)的變化范圍;

的周長(zhǎng)是否一定?說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在完全重合放置的兩張矩形紙片中,,,將上面的矩形紙片折疊,使點(diǎn)與點(diǎn)重合,折痕為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接,則圖中陰影部分的面積為(

A. B. 6 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案