已知方程的兩根為,下列各式計算正確的是

[  ]

A.
B.
C.
D.
答案:B
解析:

由題意得:=1

-2()+4=1-×2+4=-2

故選B


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,已知關(guān)于x的方程x2-(c+4)x+4c+8=0.
(1)若a,b是方程的兩根,求證△ABC為直角三角形;
(2)若在(1)的條件下,且25asinA=9c,求此直角三角形三邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)新人教版初中數(shù)學(xué)教材中我們學(xué)習(xí)了:若關(guān)于x的一元二次方程ax2+bx+c=0的兩根為x1,x2,則x1+x2=-
b
a
,x1x2=
c
a
.根據(jù)這一性質(zhì),我們可以求出已知方程關(guān)于x1,x2的代數(shù)式的值.例如:已知x1,x2為方程x2-2x-1=0的兩根,則x1+x2=
 
,x1•x2=
 
.那么x12+x22=(x1+x22-2x1x2=
 

請你完成以上的填空.
(2)閱讀材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求
mn+1
n
的值.
解:由n2+n-1=0可知n≠0.
1+
1
n
-
1
n2
=0
.∴
1
n2
-
1
n
-1=0

又m2-m-1=0,且mn≠1,即m≠
1
n

∴m,
1
n
是方程x2-x-1=0的兩根.∴m+
1
n
=1
.∴
mn+1
n
=1.
(3)根據(jù)閱讀材料所提供的方法及(1)的方法完成下題的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求m2+
1
n2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程(a-1)x2+(2-3a)x+3=0.
(1)求證:當(dāng)a取不等于1的實數(shù)時,此方程總有兩個實數(shù)根;
(2)若m,n(m<n)是此方程的兩根,并且
1
m
+
1
n
=
4
3
.直線l:y=mx+n交x軸于點A,交y軸于點B.坐標(biāo)原點O關(guān)于直線l的對稱點O′在反比例函數(shù)y=
k
x
的圖象上,求反比例函數(shù)y=
k
x
的解析式;
(3)在(2)成立的條件下,將直線l繞點A逆時針旋轉(zhuǎn)角θ(0°<θ<90°),得到直線l′,l′交y軸于點P,過點P作x軸的平行線,與上述反比例函數(shù)y=
k
x
的圖象交于點Q,當(dāng)四邊形APQO′的面積為9-
3
3
2
時,求θ的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)若關(guān)于x的一元二次方程ax2+bx+c=0的兩根為x1,x2,則數(shù)學(xué)公式.根據(jù)這一性質(zhì),我們可以求出已知方程關(guān)于x1,x2的代數(shù)式的值.例如:已知x1,x2為方程x2-2x-1=0的兩根,則x1+x2=______,x1•x2=______.那么x12+x22=(x1+x22-2x1x2=______.
請你完成以上的填空.
(2)閱讀材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求數(shù)學(xué)公式的值.
解:由n2+n-1=0可知n≠0.
數(shù)學(xué)公式.∴數(shù)學(xué)公式
又m2-m-1=0,且mn≠1,即數(shù)學(xué)公式
∴m,數(shù)學(xué)公式是方程x2-x-1=0的兩根.∴數(shù)學(xué)公式.∴數(shù)學(xué)公式=1.
(3)根據(jù)閱讀材料所提供的方法及(1)的方法完成下題的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求數(shù)學(xué)公式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省汕頭市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(1)新人教版初中數(shù)學(xué)教材中我們學(xué)習(xí)了:若關(guān)于x的一元二次方程ax2+bx+c=0的兩根為x1,x2,則.根據(jù)這一性質(zhì),我們可以求出已知方程關(guān)于x1,x2的代數(shù)式的值.例如:已知x1,x2為方程x2-2x-1=0的兩根,則x1+x2=______,x1•x2=______.那么x12+x22=(x1+x22-2x1x2=______.
請你完成以上的填空.
(2)閱讀材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求的值.
解:由n2+n-1=0可知n≠0.
.∴
又m2-m-1=0,且mn≠1,即
∴m,是方程x2-x-1=0的兩根.∴.∴=1.
(3)根據(jù)閱讀材料所提供的方法及(1)的方法完成下題的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求的值.

查看答案和解析>>

同步練習(xí)冊答案