【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.
(1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,求線段EP1長度的最大值與最小值.
【答案】(1)∠CC1A1=90°.
(2)S△CBC1=.
(3)最小值為:EP1=﹣2.
最大值為:EP1= 7.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性質(zhì),即可求得∠CC1A1的度數(shù).
(2)由旋轉(zhuǎn)的性質(zhì)可得:△ABC≌△A1BC1,易證得△ABA1∽△CBC1,利用相似三角形的面積比等于相似比的平方,即可求得△CBC1的面積.
(3)由①當P在AC上運動至垂足點D,△ABC繞點B旋轉(zhuǎn),使點P的對應(yīng)點P1在線段AB上時,EP1最;②當P在AC上運動至點C,△ABC繞點B旋轉(zhuǎn),使點P的對應(yīng)點P1在線段AB的延長線上時,EP1最大,即可求得線段EP1長度的最大值與最小值.
解:(1)∵由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,
∴∠CC1B=∠C1CB=45°.
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.
(2)∵由旋轉(zhuǎn)的性質(zhì)可得:△ABC≌△A1BC1,
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1.
∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1
∴∠ABA1=∠CBC1.
∴△ABA1∽△CBC1
∴.
∵S△ABA1=4,∴S△CBC1=.
(3)過點B作BD⊥AC,D為垂足,
∵△ABC為銳角三角形,∴點D在線段AC上.
在Rt△BCD中,BD=BC×sin45°=.
①如圖1,當P在AC上運動至垂足點D,△ABC繞點B旋轉(zhuǎn),使點P的對應(yīng)點P1在線段AB上時,EP1最小.最小值為:EP1=BP1﹣BE=BD﹣BE=﹣2.
②如圖2,當P在AC上運動至點C,△ABC繞點B旋轉(zhuǎn),使點P的對應(yīng)點P1在線段AB的延長線上時,EP1最大.最大值為:EP1=BC+BE=5+2=7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB:BC=3:5,點E是對角線BD上一動點(不與點B,D重合),將矩形沿過點E的直線MN折疊,使得點A,B的對應(yīng)點G,F分別在直線AD與BC上,當△DEF為直角三角形時,CN:BN的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接三角形ABC中,,,過C作AB的垂線l交⊙O于另一點D,垂足為E.設(shè)P是上異于A,C的一個動點,射線AP交l于點F,連接PC與PD,PD交AB于點G.
(1)求證:;
(2)若, ,求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以C(x0,y0)為圓心半徑為r的圓的標準方程是(x﹣x0)2+(y﹣y0)2=r2.例如,在平面直角坐標系中,⊙C的圓心C(2,3),點M(3,5)是圓上一點,如圖,過點C、點M分別作x軸、y軸的平行線,交于點H,在Rt△MCH中,由勾股定理可得:r2=MC2=CH2+MH2=1+4=5,則圓C的標準方程是(x﹣2)2+(y﹣3)2=5.那么以點(﹣3,4)為圓心,過點(﹣2,﹣1)的圓的標準方程是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若(x﹣a)(x+5)=x2﹣bx﹣5,一元二次方程ax2+bx+k=0的兩個實數(shù)根x1,x2滿足(x1﹣x2)2﹣2x1x2=4,則k=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程(m+1)x2+2(m+1)x+2=0有兩個相等的實數(shù)根,拋物線y=﹣x2+(m+1)x+3與x軸交于A、B兩點(A在B左側(cè)),與y軸相交于點C,拋物線的頂點為D.
(1)求拋物線的解析式.
(2)如圖1,設(shè)拋物線的對軸交x軸于點E,在拋物線的對稱軸上是否存在點P,使P點到x軸的距離等于P點到直線BD的距離?若存在,求出點P的坐標,若不存在,請說明理由.
(3)如圖2,作CF⊥DE于F,M為射線EA上一動點.如果在線段EF上恰好存在兩個點N滿足△CFN與△NEM相似,求M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x與雙曲線y=(k>0,x>0)交于點A,將直線y=x向上平移2個單位長度后,與y軸交于點C,與雙曲線交于點B,若OA=3BC,則k的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與思考:
阿基米德(公元前287年一公元前212年),偉大的古希臘哲學家、百科式科學家、數(shù)學家、物理學家、力學家,靜態(tài)力學和流體靜力學的奠基人,阿基米德流傳于世的著作有10余種,多為希臘文手稿下面是《阿基米德全集》中記載的一個命題:AB是⊙O的弦,點C在⊙O上,且CD⊥AB于點D,在弦AB上取點E,使AD=DE,點F是上的一點,且=,連接BF可得BF=BE.
(1)將上述問題中弦AB改為直徑AB,如圖1所示,試證明BF=BE;
(2)如圖2所示,若直徑AB=10,EO=OB,作直線l與⊙O相切于點F.過點B作BP⊥l于點P.求BP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com