【題目】如圖1,已知點A(-2,0).點D在y軸上,連接AD并將它沿x軸向右平移至BC的位置,且點B坐標為(4,0),連接CD,OD=AB.
(1)線段CD的長為 ,點C的坐標為 ;
(2)如圖2,若點M從點B出發(fā),以1個單位長度/秒的速度沿著x軸向左運動,同時點N從原點O出發(fā),以相同的速度沿折線OD→DC運動(當N到達點C時,兩點均停止運動).假設運動時間為t秒.
①t為何值時,MN∥y軸;
②求t為何值時,S△BCM=2S△ADN.
【答案】(1)6,(6,3);(2)①;② 為 或6.
【解析】
(1)由平移的性質可得四邊形ABCD是平行四邊形,可得AB=CD=6,由題意可求點C坐標;
(2)由題意列出方程,可求解;
(3)分兩種情況討論,列出方程可求解.
(1)∵點A(-2,0),點B坐標為(4,0),
∴AB=6
∵將AD沿x軸向右平移至BC的位置,
∴AD∥BC,AD=BC
∴四邊形ABCD是平行四邊形
∴CD=AB=6,CD∥AB
∵OD=AB.
∴OD=3,且CD∥AB
∴點C(6,3)
故答案為:6,(6,3);
(2)∵MN∥y軸,
∴點N在CD上,
∴4-t=t-3
∴t=
∴當t=s時,MN∥y軸;
(3)當點N在OD上時,
∵S△BCM=2S△ADN.
∴×3×t=2××2×(3-t)
解得:t=
當點N在CD上時,
∵S△BCM=2S△ADN.
∴×3×t=2××3×(t-3)
解得:t=6
綜上所述:t=6或時,S△BCM=2S△ADN.
科目:初中數學 來源: 題型:
【題目】已知等邊三角形的高為6,在這個三角形所在的平面內有一個點,若點到的距離是1,點到的距離是2,則點到的最小距離與最大距離分別是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如下圖①,拋物線y=ax2+bx+3(a≠0)與x軸交于點A(,0),B(3,0),與y軸交于點C,連接BC.
(1)求拋物線的表達式;
(2)拋物線上是否存在點M,使得△MBC的面積與△OBC的面積相等,若存在,請直接寫出點M的坐標;若不存在,請說明理由;
(3)點D(2,m)在第一象限的拋物線上,連接BD.在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校提倡練字,小冬和小紅一起去文具店買鋼筆和字帖,小冬在文具店買1支鋼筆和3本字帖共花了38元,小紅買了2支鋼筆和4本字帖共花了64元.
(1)每支鋼筆與每本字帖分別多少元?
(2)帥帥在六一節(jié)當天去買,正巧碰到文具店搞促銷,促銷方案有兩種形式:
①所購商品均打九折
②買一支鋼筆贈送一本字帖
帥帥要買5支鋼筆和15本字帖,他有三種選擇方案:
(Ⅰ)一次買5支鋼筆和15本字帖,然后按九折付費;
(Ⅱ)一次買5支鋼筆和10本字帖,文具店再贈送5本字帖;
(Ⅲ)分兩次購買,第一次買5支鋼筆,文具店會贈送5本字帖,第二次再去買10本字帖,可以按九折付費;問帥帥最少要付多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A,B,C三點在同一直線上,∠DAE=∠AEB,∠D=∠BEC,
(1)求證:BD∥CE;
(2)若∠C=70°,∠DAC=50°,求∠DBE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,△ABC, ∠ABC、∠ACB 的三等分線交于點 E、D, 若∠1=130°,∠2=110°,求∠A 的度數。
(2)如圖,△ABC,∠ABC 的三等分線分別與∠ACB 的平分線交于點 D,E 若∠1=110°,∠2=130°,求∠A 的度數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形中,頂角等于36°的等腰三角形稱為黃金三角形,如圖,△ABC中,AB=AC,且∠A=36°.
(1)在圖中用尺規(guī)作邊AB的垂直平分線交AC于D,連接BD(保留作圖痕跡,不寫作法).
(2)請問△BDC是不是黃金三角形,如果是,請給出證明,如果不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)先作出△ABC,再將△ABC向下平移5個單位長度后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉90°后得得到△A2B2C2,請畫出△A2B2C2;
(3)求出以O,A1,B為頂點的三角形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知a,b,c均為實數,且 +|b+1|+(c+2)2=0,求關于x的方程ax2+bx+c=0的根;
(2)已知二次函數y=ax2+bx+c的圖象經過A(﹣1,0),B(0,﹣3),C(4,5)三點,求該二次函數的解析式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com