【題目】如圖,在△ABC中,AB=AC,E是BC中點,點O在AB上,以O(shè)B為半徑的⊙O經(jīng)過點AE上的一點M,分別交AB,BC于點F,G,連BM,此時∠FBM=∠CBM.
(1)求證:AM是⊙O的切線;
(2)當BC=6,OB:OA=1:2 時,求,AM,AF圍成的陰影部分面積.
【答案】(1)見試題解析;(2)2﹣π.
【解析】
試題分析:(1)連接OM,由AB=AC,且E為BC中點,利用三線合一得到AE垂直于BC,再由OB=OM,利用等邊對等角得到一對角相等,由已知角相等,等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行得到OM與BC平行,可得出OM垂直于AE,即可得證;
(2)由E為BC中點,求出BE的長,再由OB與OA的比值,以及OB=OM,得到OM與OA的比值,由OM垂直于AE,利用直角三角形中一直角邊等于斜邊的一半,得到此直角邊所對的角為30度得到∠MAB=30°,∠MOA=60°,陰影部分的面積=三角形AOM面積﹣扇形MOF面積,求出即可.
試題解析:(1)連結(jié)OM,∵AB=AC,E是BC中點,∴BC⊥AE,∵OB=OM,∴∠OMB=∠MBO,
∵∠FBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC,∴OM⊥AE,∴AM是⊙O的切線;
(2)∵E是BC中點,∴BE=BC=3,∵OB:OA=1:2,OB=OM,∴OM:OA=1:2,
∵OM⊥AE,∴∠MAB=30°,∠MOA=60°,OA:BA=1:3,∵OM∥BC,∴△AOM∽△ABE,
∴==,∴OM=2,∴AM==2,
∴S陰影=×2×2﹣=2﹣π.
科目:初中數(shù)學 來源: 題型:
【題目】在某次海上軍事學習期間,我軍為確保△OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達,雷達的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)
(1)若三艘軍艦要對△OBC海域進行無盲點監(jiān)控,則雷達的有效探測半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時刻軍艦B測得A位于北偏東60°方向上,同時軍艦C測得A位于南偏東30°方向上,求此時敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線以20海里/小時的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( 。
A. 若線段AC=BC,則點C是線段AB的中點
B. 任何有理數(shù)的絕對值都不是負數(shù)
C. 角的大小與角兩邊的長度有關(guān),邊越長角越大
D. 兩點之間,直線最短
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年鄞州區(qū)財政收入仍保持持續(xù)增長態(tài)勢,全年財政收入為373.9億元,其中373.9億元用科學記數(shù)法表示為( )
A.373.9×108元
B.37.39×109元
C.3.739×1010元
D.0.3739×1011
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中 ,AB=8 , BC=6, 點P在邊AB上。若將△DAP沿DP折疊 ,使點A落在矩形對角線上的點A,處,則AP的長為__________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市6月上旬前5天的最高氣溫如下(單位:℃):28,29,31,29,32,對于這組數(shù)據(jù),眾數(shù)是_____,中位數(shù)是_____,極差是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com