【題目】某數(shù)學(xué)活動小組在一次活動中,對一個數(shù)學(xué)問題作如下探究:
(問題發(fā)現(xiàn))如圖1,AD,BD為⊙O的兩條弦(AD<BD),點(diǎn)C為的中點(diǎn),過C作CE⊥BD,垂足為E.求證:BE=DE+AD.
(問題探究)小明同學(xué)的思路是:如圖2,在BE上截取BF=AD,連接CA,CB,CD,CF.……請你按照小明的思路完成上述問題的證明過程.
(結(jié)論運(yùn)用)如圖3,△ABC是⊙O的內(nèi)接等邊三角形,點(diǎn)D是上一點(diǎn),∠ACD=45°,連接BD,CD,過點(diǎn)A作AE⊥CD,垂足為E.若AB=,則△BCD的周長為 .
(變式探究)如圖4,若將(問題發(fā)現(xiàn))中“點(diǎn)C為的中點(diǎn)”改為“點(diǎn)C為優(yōu)弧的中點(diǎn)”,其他條件不變,上述結(jié)論“BE=DE+AD”還成立嗎?若成立,請說明理由;若不成立,請寫出BE、AD、DE之間的新等量關(guān)系,并加以證明.
【答案】【問題發(fā)現(xiàn)】見解析;【問題探究】見解析;【結(jié)論運(yùn)用】8+4;【變式探究】結(jié)論“BE=DE+AD”不成立,BE+AD=DE,理由見解析
【解析】
[問題探究]在BE上截取BF=AD,連接CA,CB,CD,CF,證明△DAC≌△FBC,根據(jù)全等三角形的性質(zhì)得到CD=CF,根據(jù)等腰三角形的三線合一、結(jié)合圖形證明結(jié)論;
[結(jié)論運(yùn)用]連接AD,在CE上截取CF=AD,連接AF,證明△DAB≌△FAC,得到DB+DC=2EC,根據(jù)等腰直角三角形的性質(zhì)求出EC,根據(jù)三角形的周長公式計算,得到答案;
[變式探究]在線段DE上截取DF=AD,連接CB、CF、CD、CA,證明△ADC≌△FDC,根據(jù)全等三角形的性質(zhì)、等腰三角形的性質(zhì)解答即可.
解:[問題探究]如圖2,在BE上截取BF=AD,連接CA,CB,CD,CF,
∵點(diǎn)C為的中點(diǎn),
∴=,
∴AC=BC,
由圓周角定理得,∠DAC=∠DBC,
在△DAC和△FBC中,
,
∴△DAC≌△FBC(SAS)
∴CD=CF,又CE⊥BD,
∴DE=EF,
∴BE=EF+BF=DE+AD;
[結(jié)論運(yùn)用]連接AD,在CE上截取CF=AD,連接AF,
由[問題探究]可知,△DAB≌△FAC,
∴BD=CF,AD=AF,
∵AE⊥CD,
∴DE=EF,
∴EC=EF+CF=DE+BD,
∴DB+DC=2EC,
在Rt△AEC中,∠ACE=45°,
∴EC=AC=4,
∴△BCD的周長=DB+DC+BC=8+4,
故答案為:8+4;
[變式探究]結(jié)論“BE=DE+AD”不成立,BE+AD=DE,
理由如下:在線段DE上截取DF=AD,連接CB、CF、CD、CA,
∵點(diǎn)C為優(yōu)弧的中點(diǎn)”,
∴=,
∴AC=CB,∠ADC=∠BDC,
在△ADC和△FDC中,
,
∴△ADC≌△FDC(SAS),
∴CA=CF,
∵CA=CB,
∴CF=CB,又CE⊥BD,
∴BE=EF,
∴DE=DF+EF=BE+AD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們常見的汽車玻璃升降器如圖①所示,圖②和圖③是升降器的示意圖,其原理可以看作是主臂PB繞固定的點(diǎn)O旋轉(zhuǎn),當(dāng)端點(diǎn)P在固定的扇形齒輪上運(yùn)動時,通過叉臂式結(jié)構(gòu)(點(diǎn)B可在MN上滑動)的玻璃支架MN帶動玻璃沿導(dǎo)軌作上下運(yùn)動而達(dá)到玻璃升降目的.點(diǎn)O和點(diǎn)P,A,B在同一直線上.當(dāng)點(diǎn)P與點(diǎn)E重合時,窗戶完全閉合(圖②),此時∠ABC=30°;當(dāng)點(diǎn)P與點(diǎn)F重合時,窗戶完全打開(圖③).已知的半徑OP=5cm,=cm,OA=AB=AC=20cm.
(1)當(dāng)窗戶完全閉合時,OC=_____cm.
(2)當(dāng)窗戶完全打開時,PC=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校開展“書香校園”活動以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計表
學(xué)生借閱圖書的次數(shù)
借閱圖書的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
學(xué)生借閱圖書的次數(shù)統(tǒng)計表
請你根據(jù)統(tǒng)計圖表的信息,解答下列問題:
(1)a= ;b=
(2)該調(diào)查統(tǒng)計數(shù)據(jù)的中位數(shù)是__________次
(3)扇形統(tǒng)計圖中,“3次”所對應(yīng)的扇形圓心角度數(shù)是______________;
(4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校學(xué)生在一周內(nèi)借閱圖書“4次以上”的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開發(fā)區(qū)建設(shè)中,要拆除煙囪AB,在地面上事先畫定以B為圓心,半徑與AB等長的圓形危險區(qū),現(xiàn)在從離B點(diǎn)21米遠(yuǎn)的建筑物CD頂點(diǎn)C,測得A點(diǎn)的仰角為,B點(diǎn)的俯角為,問離B點(diǎn)35米遠(yuǎn)的文物保護(hù)區(qū)是否在危險區(qū)內(nèi),請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)以AB邊上一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A,C;(保留作圖痕跡,不寫作法)
(2)判斷點(diǎn)B與⊙O的位置關(guān)系是 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于、兩點(diǎn),拋物線經(jīng)過點(diǎn),交軸正半軸于點(diǎn).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)是拋物線上的一個動點(diǎn),并且點(diǎn)在第一象限內(nèi),連接、,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求與的函數(shù)表達(dá)式,并求出的最大值及此時動點(diǎn)的坐標(biāo);
(3)將點(diǎn)繞原點(diǎn)旋轉(zhuǎn)得點(diǎn),連接、,在旋轉(zhuǎn)過程中,一動點(diǎn)從點(diǎn)出發(fā),沿線段以每秒個單位的速度運(yùn)動到,再沿線段以每秒個單位長度的速度運(yùn)動到后停止,求點(diǎn)在整個運(yùn)動過程中用時最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)C是過點(diǎn)A的⊙O的切線上一點(diǎn),連接OC,過點(diǎn)A作OC的垂線交OC于點(diǎn)D,交⊙O于點(diǎn)E,連接CE.
(1)求證:CE與⊙O相切;
(2)連結(jié)BD并延長交AC于點(diǎn)F,若OA=5,sin∠BAE=,求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com