【題目】如圖,△ABC是等邊三角形,D,E是BC上的兩點,且BD=CE,連接AD、AE,將△AEC沿AC翻折,得到△AMC,連接EM交AC于點N,連接DM.以下判斷:①AD=AE,②△ABD≌△DCM,③△ADM是等邊三角形,④CN=EC中,正確的是_____.
【答案】①③④.
【解析】
由等邊三角形的性質(zhì)得出AB=AC,∠B=∠BAC=∠ACE=60,由SAS證得△ABD≌△ACE,得出∠BAD=∠CAE,AD=AE,由折疊的性質(zhì)得CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,推出∠DAM=∠BAC=60,則△ADM是等邊三角形,得出DM=AD,易證AB>DM,AD>DC,得出△ABD與△DCM不全等,由折疊的性質(zhì)得AE=AM,CE=CM,則AC垂直平分EM,即∠ENC=90,由∠ACE=60,得出∠CEN=30,即可得出CN=EC.
解:∵△ABC是等邊三角形,
∴AB=AC,∠B=∠BAC=∠ACE=60,
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴∠BAD=∠CAE,AD=AE,故①正確;
由折疊的性質(zhì)得:CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,
∴∠DAM=∠BAC=60,
∴△ADM是等邊三角形,
∴DM=AD,
∵AB>AD,
∴AB>DM,
∵∠ACD>∠DAC,
∴AD>DC,
∴△ABD與△DCM不全等,故③正確、②錯誤;
由折疊的性質(zhì)得:AE=AM,CE=CM,
∴AC垂直平分EM,
∴∠ENC=90,
∵∠ACE=60,
∴∠CEN=30,
∴CN=EC,故④正確,
故答案為:①③④.
科目:初中數(shù)學 來源: 題型:
【題目】我們在學完“平移、軸對稱、旋轉(zhuǎn)”三種圖形的變化后,可以進行進一步研究,請根據(jù)示例圖形,完成下表.
圖形的變化 | 示例圖形 | 與對應線段有關的結(jié)論 | 與對應點有關的結(jié)論 |
平移 | (1)__________. | ||
軸對稱 | (2)__________. | (3)__________. | |
旋轉(zhuǎn) | ;對應線段和所在的直線相交所成的角與旋轉(zhuǎn)角相等或互補 | (4)__________. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB、AC為互相垂直且相等的兩條弦,則下列說法中正確的有( 。
①點C、O、B一定在一條直線上;②若點E、點D分別是CA、AB的中點,則OE=OD;③若點E是CA的中點,連接CO,則△CEO是等腰直角三角形.
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)與的圖象如圖所示,有以下結(jié)論:①;②;③;④當時,.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖△ABC中,AB=4,BC=8,D為BC邊上的一點,BD=2.
(1)求證:△ABD∽△CBA;
(2)若DE∥AB交AC于點E,請你補全圖形,再找出一個和△ABD相似的三角形,并計算DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學玩“托球賽跑”游戲,商定:用球拍托乒乓球從起跑線1起跑,繞過點跑回到起跑線(如圖示),途中乒乓球掉下來時須撿起并回到掉球處繼續(xù)賽跑,結(jié)果:甲同學由于心急,掉了球,浪費了6秒鐘,乙同學則順利跑完;事后,甲同學說:“我倆所用的全部時間的和為50秒”,乙同學說“撿球過程不算在內(nèi)時,甲的速度是我的1.2倍”根據(jù)圖文信息,求出兩人所用的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com