如圖.是一座人行天橋的示意圖,天橋的高是10米,坡面的傾斜角為45°,為了方便行人安全過(guò)天橋,市政部門決定降低坡度,使新坡面的傾斜角為30°.若新坡腳前需留2.5米的人行道,問(wèn)離原坡腳10米的建筑物是否需要拆除?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732)
如圖:
Rt△ABC中,∠BCA=45°,AB=10,
∴AC=AB=10.
同理可得:AD=10
3
≈17.32.
∴CD=AD-AC=7.32,
DE=CE-CD=10-7.32=2.68>2.5.
故原建筑物不用拆除.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知C,D是雙曲線y=
m
x
(x>0)上的兩點(diǎn),直線CD分別交x軸,y軸于A,B兩點(diǎn).設(shè)C(x1,y1,D(x2,y2),連接OC,OD(O是坐標(biāo)原點(diǎn)),若∠BOC=∠AOD=α,且tanα=
1
3
,OC=
10

(1)求C,D的坐標(biāo)和m的值;
(2)雙曲線存在一點(diǎn)P,使得△POC和△POD的面積相等,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下判斷點(diǎn)P是否為△OCD的重心.
(4)已知點(diǎn)Q(-2,0),問(wèn)在直線AC上是否存在一點(diǎn)M使△MOQ的周長(zhǎng)L取得最短?若存在,求出L的最小值并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

今年“五一“假期.某數(shù)學(xué)活動(dòng)小組組織一次登山活動(dòng).他們從山腳下A點(diǎn)出發(fā)沿斜坡AB到達(dá)B點(diǎn).再?gòu)腂點(diǎn)沿斜坡BC到達(dá)山頂C點(diǎn),路線如圖所示.斜坡AB的長(zhǎng)為1040米,斜坡BC的長(zhǎng)為400米,在C點(diǎn)測(cè)得B點(diǎn)的俯角為30°.已知A點(diǎn)海拔121米.C點(diǎn)海拔721米.
(1)求B點(diǎn)的海拔;
(2)求斜坡AB的坡度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,∠A=50°,c=3,求∠B和a(邊長(zhǎng)保留兩個(gè)有效數(shù)字.下列數(shù)據(jù)供選擇:sin50°=0.7660,cos50°=0.6428,tan50°=1.1918,cot50°=0.8391)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,BC=9,AB=6
2
,∠ABC=45°.
(1)求△ABC的面積;
(2)求cos∠C的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某飛機(jī)于空中A處探測(cè)到目標(biāo)C,此時(shí)飛行高度AC=1200米,從飛機(jī)上看地面控制點(diǎn)B的俯角α=20°(B、C在同一水平線上),求目標(biāo)C到控制點(diǎn)B的距離(精確到1米).
(參考數(shù)據(jù)sin20°=0.34,cos20°=0.94,tan20°=0.36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,梯子AB靠在墻上,梯子的底端A到墻根O的距離為2米,梯子的頂端B到地面的距離為7米.現(xiàn)將梯子的底端A向外移動(dòng)到A′,使梯子的底端A′到墻根O的距離等于3米,同時(shí)梯子的頂端B下降到B′,那么BB′( 。
A.等于1米B.大于1米C.小于1米D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某型號(hào)飛機(jī)的機(jī)翼形狀如圖所示,ABCD,根據(jù)圖中數(shù)據(jù)計(jì)算AC、BD和CD的長(zhǎng)度(精確到0.1米,
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知在等腰△ABC中,AB=AC=13,BC=10,求底角∠B的三角函數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案