已知實(shí)數(shù)a,b,c滿足a+b+c=1,
1
a+b-c
+
1
b+c-a
+
1
c+a-b
=1,求abc的值.
考點(diǎn):分式的化簡(jiǎn)求值
專(zhuān)題:
分析:首先求出a+b-c=1-2c,b+c-a=1-2a,c+a-b=1-2b,得到
1
a+b-c
+
1
b+c-a
+
1
c+a-b
=
3-4(a+b+c)+4(ab+ac+bc)
1-2(a+b+c)+4(ab+ac+bc)-8abc
,借助
1
a+b-c
+
1
b+c-a
+
1
c+a-b
=1,即可解決問(wèn)題.
解答:解:∵a+b+c=1,
∴a+b-c=1-2c,b+c-a=1-2a,c+a-b=1-2b,
1
a+b-c
+
1
b+c-a
+
1
c+a-b

=
1
1-2a
+
1
1-2b
+
1
1-2c

=
(1-2b)(1-2c)+(1-2a)(1-2c)+(1-2a)(1-2b)
(1-2a)(1-2b)(1-2c)

=
1-2c-2b+4bc+1-2c-2a+4ac+1-2b-2a+4ab
(1-2a-2b+4ab)(1-2c)

=
3-4(a+b+c)+4(ab+ac+bc)
1-2(a+b+c)+4(ab+ac+bc)-8abc
,
1
a+b-c
+
1
b+c-a
+
1
c+a-b
=1,
∴-1+4(ab+ac+bc)=-1+4(ab+ac+bc)-8abc,
∴abc=0.
點(diǎn)評(píng):該題主要考查了分式的混合運(yùn)算法則及其應(yīng)用問(wèn)題;靈活運(yùn)用分式的混合運(yùn)算法則來(lái)變形、化簡(jiǎn)、運(yùn)算是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:(a-
2ab-b2
a
)÷
a-b
a
,其中a,b是方程組
3a-2b=5
a+3b=9
的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若27a3nb3m與-5b6a3是同類(lèi)項(xiàng),則m+n=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某項(xiàng)工程由A、B、C三個(gè)工程隊(duì)負(fù)責(zé)施工,他們將工程總量等額分成了三份并同時(shí)開(kāi)始施工.當(dāng)A隊(duì)完成了自己任務(wù)的90%時(shí),B隊(duì)完成了自己任務(wù)的一半,C隊(duì)完成了B隊(duì)已完成任務(wù)量的80%,此時(shí)A隊(duì)派出
2
3
的人力加入C隊(duì)工作,問(wèn)A隊(duì)和C隊(duì)都完成任務(wù)時(shí),B隊(duì)完成了其自身任務(wù)的多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等腰三角形的一個(gè)角是80°,則它的頂角的度數(shù)是( 。
A、30°
B、80°或20°
C、80°或50°
D、20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)扇形的圓心角為120°,半徑為15cm,則它的弧長(zhǎng)為( 。
A、5πcmB、10πcm
C、15πcmD、20πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,DC⊥BC,AD=2,CD=4,tanB=
4
3
.點(diǎn)P在AB上,PM⊥BC于點(diǎn)M,PN⊥CD于點(diǎn)N,若點(diǎn)P從點(diǎn)B開(kāi)始沿BA向點(diǎn)A運(yùn)動(dòng),
(1)求AB的長(zhǎng)度;
(2)設(shè)BP=x,用含x的代數(shù)式表示矩形CMPN的面積S.
(3)當(dāng)點(diǎn)P移動(dòng)到何位置時(shí),矩形CMPN的面積S取最大值,并求最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(圖1),后人稱(chēng)其為“趙爽弦圖”,由弦圖變化得到圖2,它是用八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3.若S1+S2+S3=12,則S2的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-kx+k-1=0.
(1)求證:當(dāng)k>2時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若二次函數(shù)y=x2-kx+k-1(k>2)的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,且tan∠OAC=4,求該二次函數(shù)的解析式;
(3)已知點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線交(2)中的二次函數(shù)圖象于點(diǎn)M,交一次函數(shù)y=px+q的圖象于點(diǎn)N.若只有當(dāng)1<m<5時(shí),點(diǎn)M位于點(diǎn)N的下方,求一次函數(shù)y=px+q的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案