閱讀下列材料,關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
;x-
1
x
=c-
1
c
的解是x1=c,x2=
-1
c
x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
;x-
2
x
=c-
2
c
的解是x1=c,x2=
-2
c
;…
(1)通過以上觀察,比較關(guān)于x的方程x+
m
x
=c+
m
c
與它的關(guān)系,猜想它的解是什么?請利用方程的解的概念來驗(yàn)證.
(2)通過上面方程的觀察,比較、理解、驗(yàn)證,你能解出關(guān)于x的方程x+
2
x-1
=a+
2
a-1
的解嗎?
分析:(1)根據(jù)題目信息解答,然后把方程的兩個解分別代入原方程的左邊進(jìn)行計算,等于右邊即可驗(yàn)證;
(2)把x-1看作一個整體,再根據(jù)題目信息解答即可求解.
解答:解:(1)根據(jù)題意,方程的解是x1=c,x2=
m
c

驗(yàn)證:當(dāng)x1=c時,左邊=x+
m
x
=c+
m
c
,
左邊=右邊,
當(dāng)x2=
m
c
時,左邊=x+
m
x
=
m
c
+
m
m
c
=
m
c
+c,
左邊=右邊,
∴是x1=c,x2=
m
c
都是原方程的解;

(2)根據(jù)題目信息,x1=a,x2-1=
2
a-1
,
解得x1=a,x2=
a+1
a-1
點(diǎn)評:本題考查了分式方程的解,以及方程的解的概念,讀懂題目提供的信息是求解的關(guān)鍵,方程的解是使方程的左右兩邊相等的未知數(shù)的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
;x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=cx2=-
1
c
;x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
;x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
(1)請觀察上述方程與解的特征,比較關(guān)于x的方程x+
m
x
=c+
m
c
(m≠0)
與它們的關(guān)系,猜想它的解是什么?并利用“方程的解”的概念進(jìn)行驗(yàn)證.
(2)由上述的觀察、比較、猜想、驗(yàn)證,可以得出結(jié)論:
如果方程的左邊是未知數(shù)與其倒數(shù)的倍數(shù)的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數(shù)換成了某個常數(shù),那么這樣的方程可以直接得解,請用這個結(jié)論解關(guān)于x的方程:x+
2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解題:閱讀下列材料,關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
;
x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=c,x2=-
1
c
;x+
2
x
=c+
2
c
的解是:x1=c,x2=
2
c
,…
(1)觀察上述方程及其解的特征,直接寫出關(guān)于x的方程x+
m
x
=c+
m
c
(m≠0)的解,并利用“方程的解”的概念進(jìn)行驗(yàn)證;
(2)通過(1)的驗(yàn)證所獲得的結(jié)論,你能解出關(guān)于x的方程:x+
2
x-1
=a+
2
a-1
的解嗎?若能,請求出此方程的解;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
(1)請觀察上述方程與解的特征,比較關(guān)于x+
m
x
=c+
m
c
(m≠0)與它們的關(guān)系,猜想它的解是什么,并利用“方程的解”的概念進(jìn)行驗(yàn)證.
(2)請用這個結(jié)論解關(guān)于x的方程:x+
2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=c,x2=-
1
c
x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
;x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c

(1)請觀察上述方程解的特征,比較關(guān)于x的方程x+
m
x
=c+
m
c
(m
≠0)與它們的關(guān)系,猜想它的解是
x1=c,x2=
m
c
x1=c,x2=
m
c

(2)利用上述結(jié)論求關(guān)于x的方程x+
2
x-1
=a+
2
a-1
的解.(不要進(jìn)行檢驗(yàn)).

查看答案和解析>>

同步練習(xí)冊答案