【題目】在矩形ABCD中,邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處(如圖1).

(1)如圖2,設(shè)折痕與邊BC交于點(diǎn)O,連接,OP、OA.已知△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng);
(2)動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P、A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN、CA,交于點(diǎn)F,過(guò)點(diǎn)M作ME⊥BP于點(diǎn)E.
①在圖1中畫(huà)出圖形;
②在△OCP與△PDA的面積比為1:4不變的情況下,試問(wèn)動(dòng)點(diǎn)M、N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?請(qǐng)你說(shuō)明理由.

【答案】
(1)

解:如圖2,∵四邊形ABCD是矩形,

∴∠C=∠D=90°,

∴∠1+∠3=90°,

∵由折疊可得∠APO=∠B=90°,

∴∠1+∠2=90°,

∴∠2=∠3,

又∵∠D=∠C,

∴△OCP∽△PDA,

∵△OCP與△PDA的面積比為1:4,

= = = ,

∴CP= AD=4,

設(shè)OP=x,則CO=8﹣x,

在Rt△PCO中,∠C=90°,

由勾股定理得 x2=(8﹣x)2+42,

解得:x=5,

∴AB=AP=2OP=10,

∴邊AB的長(zhǎng)為10;


(2)

解:①作圖如下:

;

②作MQ∥AN,交PB于點(diǎn)Q,如圖1.

∵AP=AB,MQ∥AN,

∴∠APB=∠ABP,∠ABP=∠MQP.

∴∠APB=∠MQP.

∴MP=MQ.

∵M(jìn)P=MQ,ME⊥PQ,

∴PE=EQ= PQ.

∵BN=PM,MP=MQ,

∴BN=QM.

∵M(jìn)Q∥AN,

∴∠QMF=∠BNF.

在△MFQ和△NFB中,

,

∴△MFQ≌△NFB.

∴QF=BF.

∴QF= QB.

∴EF=EQ+QF= PQ+ QB= PB.

由(1)中的結(jié)論可得:

PC=4,BC=8,∠C=90°.

∴PB= =4

∴EF= PB=2

∴當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度不變,長(zhǎng)度為2


【解析】(1)根據(jù)相似三角形△OCP∽△PDA的性質(zhì)求出PC長(zhǎng)以及AP與OP的關(guān)系,然后在Rt△PCO中運(yùn)用勾股定理求出OP長(zhǎng),從而求出AB長(zhǎng);(2)①根據(jù)題意作出圖形;②由邊相等常常聯(lián)想到全等,但BN與PM所在的三角形并不全等,且這兩條線段的位置很不協(xié)調(diào),可通過(guò)作平行線構(gòu)造全等,然后運(yùn)用三角形全等及等腰三角形的性質(zhì)即可推出EF是PB的一半,只需求出PB長(zhǎng)就可以求出EF長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)畢業(yè)生響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,投資開(kāi)辦了一個(gè)裝飾品商店,該店購(gòu)進(jìn)一種新上市的飾品進(jìn)行了30天的試銷售,購(gòu)進(jìn)價(jià)格為40元/件.銷售結(jié)束后,得知日銷售量P(件)與銷售時(shí)間x(天)之間有如下關(guān)系:P=﹣2x+120(1≤x≤30,且x為整數(shù));銷售價(jià)格Q(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q= x+50(1≤x≤30,且x為整數(shù)).
(1)試求出該商店日銷售利潤(rùn)w(元)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;
(2)在這30天的試銷售中,哪一天的日銷售利潤(rùn)最大,哪一天的日銷售利潤(rùn)最?并分別求出這個(gè)最大利潤(rùn)和最小利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC,交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接BD,BD交AC于點(diǎn)F,延長(zhǎng)AC到點(diǎn)P,連接PB.

(1)若PF=PB,求證:PB是⊙O的切線;
(2)如果AB=10,BC=6,求CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBC上任意一點(diǎn),過(guò)點(diǎn)D分別向AB、AC引垂線,垂足分別為點(diǎn)E、F.

(1)如圖①,當(dāng)點(diǎn)DBC的什么位置時(shí),DE=DF?并證明;

(2)在滿足第一問(wèn)的條件下,連接AD,此時(shí)圖中共有幾對(duì)全等三角形?請(qǐng)寫出所有的全等三角形(不必證明);

(3)如圖②,過(guò)點(diǎn)CAB邊上的高CG,請(qǐng)問(wèn)DE、DF、CG的長(zhǎng)之間存在怎樣的等量關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P與y軸相切于點(diǎn)C,⊙P的半徑是4,直線y=x被⊙P截得的弦AB的長(zhǎng)為4 ,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交ACAB邊于E,F點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.

(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過(guò)Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了探究.

(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請(qǐng)直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關(guān)系為
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案