【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直路上行駛過程中汽車離出發(fā)地的距離S(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,下列說法正確的是( 。

A.汽車共行駛了120千米

B.汽車在行駛途中停留了2小時

C.汽車在AB段的行駛速度與CD段的行駛速度相同

D.汽車自出發(fā)后3小時至4.5小時之間行駛的平均速度為80千米/

【答案】D

【解析】

根據(jù)函數(shù)圖像,分析各點的含義,利用路程與時間的關(guān)系依次進行求解.

解:讀圖可得:A、汽車的最大位移為120千米,來回的路程為240千米,故錯誤;

BBC間的位移不變,其時間為21.50.5,故汽車在途中停留了0.5小時,故錯誤;

C、汽車在AB段的行駛速度為km/sCD段的行駛速度為80km/s,故C錯誤;

D、汽車返回時的速度是80千米/小時,故D正確;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+x+x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點D是點C關(guān)于拋物線對稱軸的對稱點,連接CD,過點DDHx軸于點H,過點AAEACDH的延長線于點E.

(1)求線段DE的長度;

(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當(dāng)CPF的周長最小時,MPF面積的最大值是多少;

(3)在(2)問的條件下,將得到的CFP沿直線AE平移得到C′F′P′,將C′F′P′沿C′P′翻折得到C′P′F″,記在平移過稱中,直線F′P′x軸交于點K,則是否存在這樣的點K,使得F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在直角三角形ABC中,∠BAC=90°,AB=AC,DBC的中點,EAC上一點,點GBE上,連接DG并延長交AEF,若∠FGE=45°.

(1)求證:BDBC=BGBE;

(2)求證:AG⊥BE;

(3)若EAC的中點,求EF:FD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx8x軸,y軸分別交于點A,B,直線yx1與直線AB交于點C,與y軸交于點D

1)求點C的坐標(biāo).

2)求BDC的面積.

3)如圖,Py軸正半軸上的一點,Q是直線AB上的一點,連接PQ

①若PQx軸,且點A關(guān)于直線PQ的對稱點A恰好落在直線CD上,求PQ的長.

②若BDCBPQ全等(Q不與點C重合),請寫出所有滿足要求的點Q坐標(biāo)(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.

如圖所示,已知:⊙IABCBC邊上的旁切圓,E、F分別是切點,ADIC于點D.

(1)試探究:D、E、F三點是否同在一條直線上?證明你的結(jié)論.

(2)設(shè)AB=AC=5,BC=6,如果DIEAEF的面積之比等于m,,試作出分別以 , 為兩根且二次項系數(shù)為6的一個一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調(diào)查中,喜歡籃球項目的同學(xué)有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加;@球隊,請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y= (x<0)的圖象與直線y= x+m相交于點A和點B.過點AAEx軸于點E,過點BBFy軸于點F,P為線段AB上的一點,連接PE、PF.若PAEPBF的面積相等,且xP=﹣ ,xA﹣xB=﹣3,則k的值是( 。

A. ﹣5 B. C. ﹣2 D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學(xué)生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?

(2)請把折線統(tǒng)計圖(圖1)補充完整;

(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應(yīng)的圓心角的度數(shù);

(4)如果這所中學(xué)共有學(xué)生1800名,那么請你估計最喜愛科普類書籍的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案