【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+4的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,⊙C的半徑為2,M是⊙C上任意一點(diǎn),連接MB,取MB的中點(diǎn)D,連接OD,則線段OD的取值范圍是______.
【答案】-1≤OD≤+1
【解析】
連接AM,當(dāng)點(diǎn)A、C、M共線時(shí),來(lái)求AM的最值,結(jié)合三角形中位線定理可以求得OD的取值范圍.
解:由y=-x2+4得到:A(-2,0),C(0,4).
則AC=2.
連接AM,如圖,
∵D為MB的中點(diǎn),O為AB的中點(diǎn),
∴OD為△ABM的中位線,
∴OD=AM.
當(dāng)AM的值最小時(shí),OD的值最。(dāng)直線AC經(jīng)過(guò)點(diǎn)M時(shí),AM最小,此時(shí)AM=2-2,OD最小值=AM=-1.
當(dāng)AM的值最大時(shí),OD的值最大,當(dāng)線段AC延長(zhǎng)線經(jīng)過(guò)點(diǎn)M時(shí),AM最大,此時(shí)AM=2+2,OD最小值=AM=+1.
所以線段OD的取值范圍是-1≤OD≤+1.
故答案是:-1≤OD≤+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過(guò)點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,點(diǎn)I是△ABC的內(nèi)心,點(diǎn)O在邊BC上,以點(diǎn)O為圓心,OB長(zhǎng)為半徑的圓恰好經(jīng)過(guò)點(diǎn)I,連接CI,BI.
(1)求證:CI是⊙O的切線;
(2)若AC=BC=5,AB=6,求BI的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB是⊙O的直徑,點(diǎn)E是弧BF的中點(diǎn),連接AF交過(guò)E的切線于點(diǎn)D,AB的延長(zhǎng)線交該切線于點(diǎn)C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣4k+4與拋物線y=x2﹣x交于A、B兩點(diǎn).
(1)直線總經(jīng)過(guò)定點(diǎn),請(qǐng)直接寫出該定點(diǎn)的坐標(biāo);
(2)點(diǎn)P在拋物線上,當(dāng)k=﹣時(shí),解決下列問(wèn)題:
①在直線AB下方的拋物線上求點(diǎn)P,使得△PAB的面積等于20;
②連接OA,OB,OP,作PC⊥x軸于點(diǎn)C,若△POC和△ABO相似,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角度小于180°),得到△ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)如圖1,連接BE,若∠DAB+∠ACB=180°,請(qǐng)判斷四邊形AEBC的形狀,并說(shuō)明理由;
(2)如圖2,設(shè)BE的延長(zhǎng)線與AD交于點(diǎn)F,若AF=FD,求∠BAD的度數(shù);
(3)如圖3,連接CD,若∠CAE=∠ACB,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠開發(fā)新產(chǎn)品,需要用甲、乙兩種化工原料配制A、B兩種產(chǎn)品共40桶,技術(shù)員到倉(cāng)庫(kù)進(jìn)行準(zhǔn)備,發(fā)現(xiàn)庫(kù)存甲種原料300升,乙種原料170升,已知配制A、B兩種產(chǎn)品每桶需要的甲、乙兩種原料數(shù)如下表:
若配制一桶A產(chǎn)品需要小時(shí),配制一桶B產(chǎn)品需要小時(shí),求完成這兩種產(chǎn)品的開發(fā)最少需要多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx的圖象如圖所示,若關(guān)于x的一元二次方程ax2+bx+k-1=0沒有實(shí)數(shù)根,則k的取值范圍為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知ABCD中,以AB為斜邊在ABCD內(nèi)作等腰直角△ABE,且AE=AD,連接DE,過(guò)E作EF⊥DE交AB于F交DC于G,且∠AEF=15°
(1)若EF=,求AB的長(zhǎng).
(2)求證:2GE+EF=AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com