【題目】1)解方程:;

2)解方程組:;

3)解不等式:;

4)解不等式組:并把它的解集表示在數(shù)軸上.

【答案】1x=3;(2;(3x≥;(4-4≤x<1,圖見解析.

【解析】

1)按照移項、合并同類項、系數(shù)化為1的步驟求解即可;

2)把①×2-②,消去x,求出y的值,再把求得的y的值代入①求出y即可;

3)按照去括號、移項、合并同類項、系數(shù)化為1的步驟求解即可;

4)先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集,然后畫數(shù)軸表示即可.

1,

5x-3x=4+2,

2x=6,

x=3

2,

把①×2-②,得

5y=10,

y=2,

y=2代入①,得

x+8=7,

x=-1,

;

3,

10-4x+162x-2,

-4x-2x-2-16-10,

-6x-28,

x;

4

解①得

x-4,

解②得

x<1,

-4≤x<1

在數(shù)軸上表示為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FCADE

1)求證:AFE≌△CDF;

2)若AB=4,BC=8,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系xOy中,函數(shù)yx0)的圖象與一次函數(shù)ykxk的圖象的交點為Am2).

1)求一次函數(shù)的解析式;

2)設(shè)一次函數(shù)ykxk的圖象與y軸交于點B,若Px軸上一點,且滿足△PAB的面積是6,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過DDOAB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD

1)求證:DOB∽△ACB

2)若AD平分∠CAB,求線段BD的長;

3)當(dāng)AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.MAD中點,連接CMBD于點N,且ON=1.

(1)求BD的長;

(2)若DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖ABC三個頂點的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

(1)畫出ABC向上平移6個單位得到的A1B1C1

(2)以點C為位似中心,在網(wǎng)格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A0,3)、B3,4)、C2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

1ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標(biāo)是 ;

2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,點C2的坐標(biāo)是 ;(畫出圖形)

3A2B2C2的面積是 平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了綠化環(huán)境,某中學(xué)八年級(3班)同學(xué)都積極參加了植樹活動,下面是今年3月份該班同學(xué)植樹情況的形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.

1)植樹3株的人數(shù)為   ;

2)該班同學(xué)植樹株數(shù)的中位數(shù)是   ;

3)求該班同學(xué)平均植樹的株數(shù).

查看答案和解析>>

同步練習(xí)冊答案