【題目】如圖,△A′B′C′是△ABC經(jīng)過平移得到的,△ABC三個頂點的坐標分別為A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一點P(x1,y1)平移后的對應(yīng)點為P′(x1+6,y1+4)
(1)請寫出三角形ABC平移的過程;
(2)寫出點A′,C′的坐標;
(3)求△A′B′C′的面積.
【答案】(1)見解析;(2)A′(2,3),C′(5,1);(3)5.5
【解析】試題分析:(1),根據(jù)△ABC中任意一點P(x1,y1)平移后的對應(yīng)點為P′(x1+6,y1+4),結(jié)合“左減右加,上加下減”的平移規(guī)律可完成解答;
(2),根據(jù)所得的圖形,結(jié)合象限內(nèi)點的坐標特征可完成解答;
(3),用長方形的面積減去三個直角三角形的面積,即可求出△A′B′C′的面積.
試題解析:(1)∵△ABC中任意一點P(x1,y1)平移后的對應(yīng)點為P′(x1+6,y1+4),
∴平移后對應(yīng)點的橫坐標加6,縱坐標加4,
∴△ABC先向右平移6個單位,再向上平移4個單位得到△A′B′C′或△ABC先向上平移4個單位,再向右平移6個單位得到△A′B′C′;
(2)由(1)可知,A′(2,3),C′(5,1);
(3)如圖所示,S△A′B′C′=3×4﹣×1×3﹣×1×4﹣×2×3=5.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(4,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上是否存在一點P,使△PAB的面積等于△ABC的面積?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x2)2+3的圖象經(jīng)過點(1,0).
(1)求這個二次函數(shù)的解析式;
(2)分別指出這個二次函數(shù)圖象的開口方向、對稱軸和頂點坐標.
(3) 寫出把此拋物線向右平移1個單位長度,再向上平移2個單位長度后的拋物線解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一空曠場地上設(shè)計一落地為矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內(nèi)的條件下活動,其可以活動的區(qū)域面積為S(m2).
(1)如圖1,若BC=4m,則S=_______m2.
(2)如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其他條件不變,則在BC的變化過程中,當(dāng)S取得最小值時,邊BC的長為________m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組數(shù)據(jù)為邊長,能構(gòu)成三角形的是( )
A.4, 4, 9B.4, 5, 9C.3, 10, 4D.3, 6, 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,點為邊上一點, ,且,點關(guān)于直線的對稱點為,連接,又的邊上的高為.
(1)判斷直線是否平行?并說明理由;
(2)證明: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個數(shù)值轉(zhuǎn)換器,如圖所示:
(1)當(dāng)輸入的x為16時.輸出的y值是 ;
(2)若輸入有效的x值后,始終輸不出y值,請寫出所有滿足要求的x的值,并說明你的理由;
(3)若輸出的y是,請寫出兩個滿足要求的x值: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com