【題目】如圖,AD是△ABC的邊BC的中線,EAD的中點(diǎn),過(guò)點(diǎn)AAFBC,交BE的延長(zhǎng)線于點(diǎn)F,連接CF,BFACG.

(1)若四邊形ADCF是菱形,試證明△ABC是直角三角形;

(2)求證:CG=2AG.

【答案】見(jiàn)解析

【解析】

(1)由菱形定義及ADABC的中線知AD=DC=BD,從而得∠DBA=DAB、DAC=DCA,根據(jù)∠DBA+DAC+DBA+DCA=180°可得答案.

(2)作DMEGAC于點(diǎn)M,分別證DMBCG的中位線和EGADM的中位線得AG=GM=CM,從而得出答案.

(1)∵四邊形ADCF是菱形,ADABC的中線,

AD=DC=BD,

∴∠DBA=DAB、DAC=DCA,

∵∠DBA+DAC+DBA+DCA=180°,

∴∠BAC=BAD+DAC=90°,

∴△ABC是直角三角形;

(2)過(guò)點(diǎn)DDMEGAC于點(diǎn)M,

ADABC的邊BC的中線,

BD=DC,

DMEG,

DMBCG的中位線,

MCG的中點(diǎn),

CM=MG,

DMEG,EAD的中點(diǎn),

EGADM的中位線,

GAM的中點(diǎn),

AG=MG,

CG=2AG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為方便市民出行,減輕城市中心交通壓力,長(zhǎng)沙市正在修建貫穿星城南北、東西的地鐵1、2號(hào)線.已知修建地鐵1號(hào)線24千米和2號(hào)線22千米共需投資265億元;若1號(hào)線每千米的平均造價(jià)比2號(hào)線每千米的平均造價(jià)多0.5億元.

1)求1號(hào)線,2號(hào)線每千米的平均造價(jià)分別是多少億元?

2)除12號(hào)線外,長(zhǎng)沙市政府規(guī)劃到2018年還要再建91.8千米的地鐵線網(wǎng).據(jù)預(yù)算,這91.8千米地鐵線網(wǎng)每千米的平均造價(jià)是1號(hào)線每千米的平均造價(jià)的1.2倍,則還需投資多少億元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖1和2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點(diǎn)E、F分別在BC、CD上,∠EAF=45°.
(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,則能證得
EF=BE+DF,請(qǐng)寫(xiě)出推理過(guò)程;

②如圖2,若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足數(shù)量關(guān)系時(shí),仍有EF=BE+DF;

(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2 ,點(diǎn)D、E均在邊BC上,且∠DAE=45°.若BD=1,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF. 求證:四邊形BCFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點(diǎn)E,AF交CD于點(diǎn)F,連接EF,過(guò)點(diǎn)A作AH⊥EF,垂足為H.
(1)如圖2,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG.求證:△AGE≌△AFE;
(2)如圖3,連接BD交AE于點(diǎn)M,交AF于點(diǎn)N.請(qǐng)?zhí)骄坎⒉孪耄壕段BM,MN,ND之間有什么數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)解方程:x2=2x.
(2)如圖,Rt△ABC中,∠BAC=90°,AB=5,AC=12,將△ABC向右平移至△A′B′C′的位置,使得四邊形ABB′A′為菱形,求B′C的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)P是BC的中點(diǎn),僅用無(wú)刻度的直尺按要求畫(huà)圖:
(1)在圖①中畫(huà)出AD的中點(diǎn)M;
(2)在圖②中畫(huà)出對(duì)角線AC的三等分點(diǎn)E,點(diǎn)F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE. 求證:四邊形BCDE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t為何值時(shí),△APQ與△AOB相似?
(3)當(dāng)t為何值時(shí),△APQ的面積為 個(gè)平方單位?

查看答案和解析>>

同步練習(xí)冊(cè)答案