精英家教網 > 初中數學 > 題目詳情

如圖,已知P為⊙O外一點,PA,PB分別切⊙O于點A,B,BC為直徑.求證:AC∥OP.

證明:連接AB交PO于D,
∵PA、PB是圓O的切線,
∴PO垂直平分AB,
∴∠AOD+∠DAO=90°,
∵AC是直徑,
∴∠BAC=90°
∴∠BAC=∠BDO=90°,
∴OP∥AC
分析:連接AB交PO于D,PA、PB為⊙O的切線,所以PO垂直平分AB,因為AC是直徑,所以∠BAC=∠BDO=90°進而所以OP∥BC.
點評:本題考查了切線的性質、圓周角定理在圓中:直徑所對的圓周角是直角.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知P為⊙O外一點,PO交⊙O于點A,割線PBC交⊙O于點B、C,且PB=BC,若OA=7,PA=4,則PB的長等于( 。
A、6
2
B、
14
C、6
D、2
7

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知A為⊙O外一點,連接OA交⊙O于P,AB切⊙O于B,AP=6cm,AB=6
3
cm

(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知P為⊙O外一點,PA,PB分別切⊙O于點A,B,BC為直徑.求證:AC∥OP.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知F為△ABC外一點,點D、E分別在邊AB、AC上,且
AD
DB
=
2
3
,DE∥BC,已知
DE
=
a
,
FC
=
b
,試用
a
b
表示
BF

查看答案和解析>>

同步練習冊答案