【題目】等腰△ABC的直角邊AB=BC=10cm,點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),均以1cm/秒的相同速度作直線運(yùn)動(dòng),已知P沿射線AB運(yùn)動(dòng),Q沿邊BC的延長線運(yùn)動(dòng),PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒時(shí),S△PCQ=S△ABC?
(3)作PE⊥AC于點(diǎn)E,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長度是否改變?證明你的結(jié)論.
【答案】(1);(2)點(diǎn)P運(yùn)動(dòng)秒時(shí),S△PCQ=S△ABC;(3)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長度不會改變.
【解析】
試題分析:由題可以看出P沿AB向右運(yùn)動(dòng),Q沿BC向上運(yùn)動(dòng),且速度都為1cm/s,S=QC×PB,所以求出QC、PB與t的關(guān)系式就可得出S與t的關(guān)系,另外應(yīng)注意P點(diǎn)的運(yùn)動(dòng)軌跡,它不僅在B點(diǎn)左側(cè)運(yùn)動(dòng),達(dá)到一定時(shí)間后會運(yùn)動(dòng)到右側(cè),所以一些問題可能會有兩種可能出現(xiàn)的情況,這時(shí)我們應(yīng)分條回答.
解:(1)當(dāng)t<10秒時(shí),P在線段AB上,此時(shí)CQ=t,PB=10﹣t
∴
當(dāng)t>10秒時(shí),P在線段AB得延長線上,此時(shí)CQ=t,PB=t﹣10
∴(4分)
(2)∵S△ABC=(5分)
∴當(dāng)t<10秒時(shí),S△PCQ=
整理得t2﹣10t+100=0無解(6分)
當(dāng)t>10秒時(shí),S△PCQ=
整理得t2﹣10t﹣100=0解得t=5±5(舍去負(fù)值)(7分)
∴當(dāng)點(diǎn)P運(yùn)動(dòng)秒時(shí),S△PCQ=S△ABC(8分)
(3)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長度不會改變.
證明:過Q作QM⊥AC,交直線AC于點(diǎn)M
易證△APE≌△QCM,
∴AE=PE=CM=QM=t,
∴四邊形PEQM是平行四邊形,且DE是對角線EM的一半.
又∵EM=AC=10∴DE=5
∴當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長度不會改變.
同理,當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時(shí),DE=5
綜上所述,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長度不會改變.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“科學(xué)”號是我國目前最先進(jìn)的海洋科學(xué)綜合考察船,它在南海利用探測儀在海面下方探測到點(diǎn)C處有古代沉船.如圖,海面上兩探測點(diǎn)A,B相距1400米,探測線與海面的夾角分別是30°和60°.試確定古代沉船所在點(diǎn)C的深度.(結(jié)果精確到1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面五條信息:(1)a<O;(2)b2﹣4ac<0;(3)b>O;(4)a+b+c>0;(5)a﹣b+c>0.你認(rèn)為其中正確信息的個(gè)數(shù)有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三個(gè)內(nèi)角互不相等的△ABC中,最小的內(nèi)角為∠A,則在下列四個(gè)度數(shù)中,∠A最大可取( )
A. 30° B. 59° C. 60° D. 89°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.2a2﹣a2=1 B.(a+b)2=a2+b2
C.(3b3)2=6b6 D.(﹣a)5÷(﹣a)3=a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com