如圖,已知一次函數(shù)y=k1x+b(k1≠0)的圖象分別與x軸,y軸交于A,B兩點,且與反比例函數(shù)(k2≠0)的圖象在第一象限的交點為C,過點C作x軸的垂線,垂足為D,若OA=OB=OD=2.
(1)求一次函數(shù)的解析式;
(2)求反比例函數(shù)的解析式.
解:(1)∵OA=OB=2,∴A(﹣2,0),B(0,2)。
將A與B的坐標(biāo)代入y=k1x+b得:,解得:。
∴一次函數(shù)解析式為y=x+2。
(2)∵OD=2,∴D(2,0)。
∵點C在一次函數(shù)y=x+2上,且CD⊥x軸,
∴將x=2代入一次函數(shù)解析式得:y=2+2=4,即點C坐標(biāo)為(2,4)。
∵點C在反比例圖象上,∴將C(2,4)代入反比例解析式得:k2=8。
∴反比例解析式為。
解析試題分析:(1)由OA與OB的長,確定出A與B的坐標(biāo),代入一次函數(shù)解析式中求出k1與b的值,即可確定出一次函數(shù)解析式。
(2)由OD的長,確定出D坐標(biāo),根據(jù)CD垂直于x軸,得到C與D橫坐標(biāo)相同,代入一次函數(shù)解析式求出C的縱坐標(biāo),確定出C坐標(biāo),將C坐標(biāo)代入反比例解析式中求出k2的值,即可確定出反比例解析式!
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知一次函數(shù)的圖象經(jīng)過點,且與函數(shù)的圖象相交于點.
(1)求的值;
(2)若函數(shù)的圖象與軸的交點是B,函數(shù)的圖象與軸的交點是C,求四邊形的面積(其中O為坐標(biāo)原點).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
青海新聞網(wǎng)訊:西寧市為加大向國家環(huán)境保護模范城市大步邁進的步伐,積極推進城市綠地、主題公園、休閑場地建設(shè).園林局利用甲種花卉和乙種花卉搭配成A、B兩種園藝造型擺放在夏都大道兩側(cè).搭配數(shù)量如下表所示:
| 甲種花卉(盆) | 乙種花卉(盆) |
A種園藝造型(個) | 盆 | 盆 |
B種園藝造型(個) | 盆 | 盆 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川南充8分)某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:
(1)轎車到達乙地后,貨車距乙地多少千米?
(2)求線段CD對應(yīng)的函數(shù)解析式.
(3)轎車到達乙地后,馬上沿原路以CD段速度返回,求轎車從甲地出發(fā)后多長時間再與貨車相遇(結(jié)果精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某校為了實施“大課間”活動,計劃購買籃球、排球共60個,跳繩120根.已知一個籃球70元,一個排球50元,一根跳繩10元.設(shè)購買籃球x個,購買籃球、排球和跳繩的總費用為y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若購買上述體育用品的總費用為4 700元,問籃球、排球各買多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸,y軸相交于A,B兩點,OA,OB的長分別是方程x2﹣14x+48=0的兩根,且OA<OB.
(1)求點A,B的坐標(biāo).
(2)過點A作直線AC交y軸于點C,∠1是直線AC與x軸相交所成的銳角,sin∠1=,點D在線段CA的延長線上,且AD=AB,若反比例函數(shù)的圖象經(jīng)過點D,求k的值.
(3)在(2)的條件下,點M在射線AD上,平面內(nèi)是否存在點N,使以A,B,M,N為頂點的四邊形是鄰邊之比為1:2的矩形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線與軸、軸分別交于點,與雙曲線分別交于點,且點的坐標(biāo)為.
(1)分別求出直線及雙曲線的解析式;
(2)求出點的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)在什么范圍內(nèi)取值時,>.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com