如圖,已知一次函數(shù)y=k1x+b(k1≠0)的圖象分別與x軸,y軸交于A,B兩點,且與反比例函數(shù)(k2≠0)的圖象在第一象限的交點為C,過點C作x軸的垂線,垂足為D,若OA=OB=OD=2.

(1)求一次函數(shù)的解析式;
(2)求反比例函數(shù)的解析式.

解:(1)∵OA=OB=2,∴A(﹣2,0),B(0,2)。
將A與B的坐標(biāo)代入y=k1x+b得:,解得:。
∴一次函數(shù)解析式為y=x+2。
(2)∵OD=2,∴D(2,0)。
∵點C在一次函數(shù)y=x+2上,且CD⊥x軸,
∴將x=2代入一次函數(shù)解析式得:y=2+2=4,即點C坐標(biāo)為(2,4)。
∵點C在反比例圖象上,∴將C(2,4)代入反比例解析式得:k2=8。
∴反比例解析式為。

解析試題分析:(1)由OA與OB的長,確定出A與B的坐標(biāo),代入一次函數(shù)解析式中求出k1與b的值,即可確定出一次函數(shù)解析式。
(2)由OD的長,確定出D坐標(biāo),根據(jù)CD垂直于x軸,得到C與D橫坐標(biāo)相同,代入一次函數(shù)解析式求出C的縱坐標(biāo),確定出C坐標(biāo),將C坐標(biāo)代入反比例解析式中求出k2的值,即可確定出反比例解析式!

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點,且與函數(shù)的圖象相交于點
(1)求的值;
(2)若函數(shù)的圖象與軸的交點是B,函數(shù)的圖象與軸的交點是C,求四邊形的面積(其中O為坐標(biāo)原點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

青海新聞網(wǎng)訊:西寧市為加大向國家環(huán)境保護模范城市大步邁進的步伐,積極推進城市綠地、主題公園、休閑場地建設(shè).園林局利用甲種花卉和乙種花卉搭配成A、B兩種園藝造型擺放在夏都大道兩側(cè).搭配數(shù)量如下表所示:

 
甲種花卉(盆)
乙種花卉(盆)
A種園藝造型(個)


B種園藝造型(個)


(1)已知搭配一個A種園藝造型和一個B種園藝造型共需元.若園林局搭配A種園藝造型個,B種園藝造型個共投入元.則A、B兩種園藝 造型的單價分別是多少元?
(2)如果搭配A、B兩種園藝造型共個,某校學(xué)生課外小組承接了搭配方案的設(shè)計,其中甲種花卉不超過盆,乙種花卉不超過盆,問符合題意的搭配方案有幾種?請你幫忙設(shè)計出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川南充8分)某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:

(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:

(1)轎車到達乙地后,貨車距乙地多少千米?
(2)求線段CD對應(yīng)的函數(shù)解析式.
(3)轎車到達乙地后,馬上沿原路以CD段速度返回,求轎車從甲地出發(fā)后多長時間再與貨車相遇(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校為了實施“大課間”活動,計劃購買籃球、排球共60個,跳繩120根.已知一個籃球70元,一個排球50元,一根跳繩10元.設(shè)購買籃球x個,購買籃球、排球和跳繩的總費用為y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若購買上述體育用品的總費用為4 700元,問籃球、排球各買多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸,y軸相交于A,B兩點,OA,OB的長分別是方程x2﹣14x+48=0的兩根,且OA<OB.

(1)求點A,B的坐標(biāo).
(2)過點A作直線AC交y軸于點C,∠1是直線AC與x軸相交所成的銳角,sin∠1=,點D在線段CA的延長線上,且AD=AB,若反比例函數(shù)的圖象經(jīng)過點D,求k的值.
(3)在(2)的條件下,點M在射線AD上,平面內(nèi)是否存在點N,使以A,B,M,N為頂點的四邊形是鄰邊之比為1:2的矩形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線軸、軸分別交于點,與雙曲線分別交于點,且點的坐標(biāo)為.

(1)分別求出直線及雙曲線的解析式;
(2)求出點的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)在什么范圍內(nèi)取值時,>.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

將二次函數(shù)化為的形式,下列結(jié)果正確的是[(   )]

A. B.
C. D.

查看答案和解析>>

同步練習(xí)冊答案