【題目】如圖,將一張矩形紙片ABCD沿直線MN折疊,使點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)E處,直線MN交BC于點(diǎn)M,交AD于點(diǎn)N.
(1)求證:CM=CN;
(2)若△CMN的面積與△CDN的面積比為3:1,且CD=4,求線段MN的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
試題(1)由折疊的性質(zhì)可得:∠ANM=∠CNM,由四邊形ABCD是矩形,可得∠ANM=∠CMN,則可證得∠CMN=∠CNM,繼而可得CM=CN.
(2)首先過點(diǎn)N作NH⊥BC于點(diǎn)H,由△CMN的面積與△CDN的面積比為3:1,易得MC=3ND=3HC,然后設(shè)DN=x,由勾股定理,可求得MN的長(zhǎng).
(1)由折疊的性質(zhì)可得:∠ANM=∠CNM .
∵ 四邊形ABCD是矩形,
∴ AD∥BC .
∴ ∠ANM=∠CMN .
∴ ∠CMN=∠CNM .
∴ CM=CN.
(2)如圖,過點(diǎn)N作NH⊥BC于點(diǎn)H,則四邊形NHCD是矩形.
∴HC=DN,NH=DC.
∵ △CMN的面積與△CDN的面積比為3:1,
∴ MC=3ND=3HC.
∴ MH=2HC.
設(shè)DN=x,則HC=x,MH=2x,
∴CM=3x=CN.
在Rt△CDN中,DC=2x=4,
∴.
∴HM=2.
在Rt△MNH中,MN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過40,每件提成4元;若當(dāng)日攪件數(shù)超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:
(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計(jì)甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)購進(jìn)甲、乙兩種商品,甲種商品共用了元,乙種商品共用了元.已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多元,且購進(jìn)的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進(jìn)價(jià);
該商場(chǎng)將購進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為元,乙種商品的銷售單價(jià)為元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的九折銷售;乙種商品銷售單價(jià)保持不變.要使兩種商品全部售完后共獲利不少于元,問甲種商品按原銷售單價(jià)至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=∠ACB,把這個(gè)三角形折疊,使得點(diǎn)B與點(diǎn)A重合,折痕分別交直線AB,AC于點(diǎn)M,N,若∠ANM=50°,則∠B的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)在教學(xué)樓前新建了一座雕塑.為了測(cè)量雕塑的高度,小明在二樓找到一點(diǎn),利用三角尺測(cè)得雕塑頂端點(diǎn)的仰角為,底部點(diǎn)的俯角為,小華在五樓找到一點(diǎn),利用三角尺測(cè)得點(diǎn)的俯角為.若為,則雕塑的高度為________.(結(jié)果精確到,參考數(shù)據(jù):).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A、B、C、D四點(diǎn)的坐標(biāo)依次為(0,0)、(6,0)(8,6)、(2,6),若一次函數(shù)y=mx﹣6m的圖象將四邊形ABCD的面積分成1:3兩部分,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為y=-x-1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過定點(diǎn)A(2,0),B(-1,3),直線l1與l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4,面積為12,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F.若D為BC邊的中點(diǎn),M為線段EF上一個(gè)動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(1,1)、B(3,5),要在坐標(biāo)軸上找一點(diǎn),使得△PAB的周長(zhǎng)最小,則點(diǎn)的坐標(biāo)為( )
A.B.C.或D.或
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com