【題目】某醫(yī)藥研究所開發(fā)一種新藥,在做藥效試驗(yàn)時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時(shí)間t(h)的變化圖象如圖所示,根據(jù)圖象回答:
(1)服藥后幾時(shí)血液中含藥量最高?每毫升血液中含多少微克?
(2)在服藥幾時(shí)內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時(shí)后,每毫升血液中含藥量逐漸下降?
(3)服藥后14 h時(shí),每毫升血液中含藥量是多少微克?
(4)如果每毫升血液中含藥量為4微克及以上時(shí),治療疾病有效,那么有效時(shí)間為幾時(shí)?
【答案】(1)服藥后2h血液中含藥量最高,每毫升血液中含6μg.;(2)在服藥2h內(nèi),每毫升血液中含藥量逐漸升高,在服藥2h后,每毫升血液中含藥量逐漸下降;(3)2μg;(4)h
【解析】
仔細(xì)觀察圖象即可得到(1)、(2)、(3)的結(jié)果,找到每毫升血液中含藥量為4微克及以上時(shí)所對(duì)應(yīng)的時(shí)間段,有效時(shí)間為兩者之差,即可得出(4)的答案.
(1)由圖象可知,服藥后2h血液中含藥量最高,達(dá)到每毫升血液中含藥6μg,
(2)由圖象可知,在服藥2h之內(nèi),血液中含藥量逐漸升高;在2h之后,血液中含藥量逐漸衰減;
(3)由圖象可知,服藥后14h,每毫升血液中含藥量是2μg;
(4)每毫升血液中含藥量為4μg及以上時(shí),所處的時(shí)間段為h~8h,
故有效時(shí)間為:8=(h).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩建筑物AB、CD的水平距離BC為60m,從A點(diǎn)測(cè)得D點(diǎn)的俯角α為30°,測(cè)得C點(diǎn)的俯角β為45°,求建筑物AB、CD的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明購(gòu)買A,B兩種商品,每次購(gòu)買同一種商品的單價(jià)相同,具體信息如下表:
根據(jù)以上信息解答下列問題:
(1)求A,B兩種商品的單價(jià);
(2)若第三次購(gòu)買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是AB上一點(diǎn),DF交AC于點(diǎn)E,AE=EC,DE=EF,則下列說(shuō)法中:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC=S四邊形DBCF.正確的有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,BD為∠ABC的角平分線,DE、DF分別是∠ADB和∠ADC的角平分線,且∠BDF=α,則∠A與∠C的等量關(guān)系是________________(等式中含有α)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ACDF中,AC=DF,點(diǎn)B在CD上,點(diǎn)E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.
(1)用兩種不同的方法表示長(zhǎng)方形ACDF的面積S
方法一:S=
方法二:S=
(2)求a,b,c之間的等量關(guān)系(需要化簡(jiǎn))
(3)請(qǐng)直接運(yùn)用(2)中的結(jié)論,求當(dāng)c=5,a=3,S的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教科書中這樣寫道:“我們把多項(xiàng)式及叫做完全平方式”,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.
例如:分解因式
;例如求代數(shù)式的最小值..可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式: _____
(2)當(dāng)為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.
(3)當(dāng)為何值時(shí).多項(xiàng)式有最小值并求出這個(gè)最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:線段AB的端點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到線段AC.
(1)請(qǐng)你用直尺和圓規(guī)在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(﹣2,﹣1),則點(diǎn)C的坐標(biāo)為;
(3)線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過區(qū)域的面積為
(4)若有一張與(3)中所說(shuō)的區(qū)域形狀相同的紙片,將它圍成一個(gè)圓錐的側(cè)面,則該圓錐底面圓的半徑長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com