【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍.
【答案】(1)答案見解析;(2)(0<x<).
【解析】試題分析:(1)根據(jù)兩角相等得到△ABD∽△DCE;
(2)如圖1,作高AF,根據(jù)直角三角形30°的性質(zhì)求AF的長,根據(jù)勾股定理求BF的長,則可得BC的長,根據(jù)(1)中的相似列比例式可得函數(shù)關(guān)系式,并確定取值.
(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;
(2)如圖1,∵AB=AC=2,∠BAC=120°,過A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=,則DC=﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化簡得: (0<x<).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線l上擺放著三個三角形:△ABC、△HFG、△DCE,已知BC=CE,F(xiàn)、G分別是BC、CE的中點,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.設(shè)圖中三個四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S1=_____,S2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·大連中考)如圖,拋物線y=x2-3x+與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E.
(1)求直線BC的解析式;
(2)當(dāng)線段DE的長度最大時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,某學(xué)習(xí)小組對有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,試猜想線段AE、AF、AC之間的數(shù)量關(guān)系;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求的值;
(3)深入探究
如圖3,若AD=4AB,探究得:的值為常數(shù)t,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小米先從盒子中隨機取出一個小球,記下數(shù)字為x,且不放回盒子,再由小華隨機取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小米、小華各取一次小球所確定的點(x,y)落在反比例函數(shù)y=的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與坐標(biāo)軸交于點A(-1,0)和點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最小,請求出點P的坐標(biāo);
(3)設(shè)二次函數(shù)的圖象與x軸的另一交點為點C,連接BC,點N是線段BC上一點,過點N作y軸的平行線交拋物線于點M,求當(dāng)四邊形OBMN為平行四邊形時,點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E是AD邊上的動點,從點A開始沿AD向D運動.以BE為邊,在BE的上方作正方形BEFG,EF交DC于點H,連接CG、BH.請?zhí)骄浚?/span>
(1)線段AE與CG是否相等?請說明理由.
(2)若設(shè)AE=x,DH=y,當(dāng)x取何值時,y最大?最大值是多少?
(3)當(dāng)點E運動到AD的何位置時,△BEH∽△BAE?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題,探究函數(shù)y=x2﹣2的圖象與性質(zhì),小張根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=x2﹣2的圖象與性質(zhì)進行了研究,下面是小張的探究過程,請補充完整:
(1)函數(shù)y=x2﹣2的自變量取值范圍是 .
(2)下表是y與x的幾組對應(yīng)值:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | |
y | … | n | 3 | 0 | ﹣1 | 0 | ﹣1 | 0 | 3 | m |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,算出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)算出的點,畫出該函數(shù)的圖象;
(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第四象限內(nèi)的最低點是1,﹣1),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其他性質(zhì)(一條即可);
(5)根據(jù)圖象回答:方程x2﹣2=﹣有 個實數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn)
(1)如圖①,Rt△ABC中,∠C=90°,AC=6,BC=8,點D是AB邊上任意一點,則CD的最小值為 ;
(2)如圖②,矩形ABCD中,AB=6,BC=8,點M、點N分別在ED、BC上,求CM+MN的最小值;
(3)如圖③.矩形ABCD中,AB=6,BC=8,點E是AB邊上一點,且AE=4,點F是EC邊上的任意一點,把△BEF沿EF翻折,點B的對應(yīng)點為G,連接AG、CG,四邊形AGCD的面積是否存在最小值,若在在,求這個最小值及此時BF的長度.若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com