【題目】如圖,AB是⊙O的直徑,BC⊥AB于點B,連接OC交⊙O于點E,弦AD∥OC,弦DF⊥AB于點G.
(1)求證:點E是 的中點;
(2)求證:CD是⊙O的切線;
(3)若AD=12,⊙O的半徑為10,求弦DF的長.
【答案】
(1)證明:連接OD,如圖,
∵AD∥OC,
∴∠1=∠A,∠2=∠ODA,
∵OA=OD,
∴∠A=∠ODA,
∴∠1=∠2,
∴ = ,即點E是 的中點
(2)證明:在△OCD和△OCB中
,
∴△OCD≌△OCB,
∴∠ODC=∠OBC=90°,
∴OD⊥CD,
∴CD是⊙O的切線
(3)解:連接BD,
∵DF⊥AB,
∴DG=FG,
∵AB為直徑,
∴∠ADB=90°,
在Rt△ADB中,BD= = =16,
∵ DGAB= ADBD,
∴DG= = ,
∴DF=2DG= .
【解析】(1)連接OD,如圖,根據(jù)平行線的性質(zhì)得∠1=∠A,∠2=∠ODA,加上∠A=∠ODA,所以∠1=∠2,然后根據(jù)圓心角、弧、弦的關(guān)系可判斷點E是 的中點;(2)先證明△OCD≌△OCB得到∠ODC=∠OBC=90°,然后根據(jù)切線的判定方法得到結(jié)論;(3)連接BD,先根據(jù)垂徑定理得到DG=FG,再利用圓周角定理得到∠ADB=90°,則可根據(jù)勾股定理計算出BD,然后利用面積法計算出DG,從而得到DF的長.
【考點精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在生產(chǎn)圖紙上通常用Φ300表示軸的加工要求,這里Φ300表示直徑是300 mm,+0.2和-0.5是指直徑在(300-0.5)mm到(300+0.2)mm之間的產(chǎn)品都屬于合格產(chǎn)品.現(xiàn)加工一批軸,尺寸要求是Φ45,請檢驗直徑為44.97 mm和45.04 mm的兩根軸是不是合格產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關(guān)于x軸對稱,連接AB.
(1)求點C,E的坐標及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α( 0°<α<180°);當旋轉(zhuǎn)后的圓與矩形ABCD的邊相切時,α=度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列三行數(shù):
-3,9,-27,81,-243,….
-5,7,-29,79,-245,….
-1,3,-9,27,-81,….
(1)第一行數(shù)是按什么規(guī)律排列的?
(2)第二行、第三行數(shù)與第一行數(shù)分別有什么關(guān)系?
(3)分別取這三行數(shù)中的第6個數(shù),計算這三個數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正確的個數(shù)有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算正確的是( )
A. 2÷×=2÷1=2 B. -24+22÷20=-24+4÷20=-20÷20=-1
C. -2×(-)=-2×(-)=+= D. -12÷(6×3)=-2×3=-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB、AC引垂線,垂足分別為E、F點.
(1)當點D在BC的什么位置時,DE=DF?并證明.
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?并請給予寫出(不 必證明).
(3)過C點作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年中考理、化實驗操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學(xué)實驗(用紙簽D、E、F表示)中各抽取一個進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.
(1)用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;
(2)小剛抽到物理實驗B和化學(xué)實驗F(記作事件M)的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com