【題目】小麗駕車從甲地到乙地.設(shè)她出發(fā)第xmin時(shí)的速度為ykm/h,圖中的折線表示她在整個(gè)駕車過程中y與x之間的函數(shù)關(guān)系.
(1)小麗駕車的最高速度是km/h;
(2)當(dāng)20≤x≤30時(shí),求y與x之間的函數(shù)關(guān)系式,并求出小麗出發(fā)第22min時(shí)的速度;
(3)如果汽車每行駛100km耗油10L,那么小麗駕車從甲地到乙地共耗油多少升?
【答案】
(1)60
(2)解:當(dāng)20≤x≤30時(shí),設(shè)y=kx+b(k≠0),
∵函數(shù)圖象經(jīng)過點(diǎn)(20,60),(30,24),
∴ ,
解得 ,
所以,y與x的關(guān)系式為y=﹣ x+132,
當(dāng)x=22時(shí),y=﹣ ×22+132=52.8km/h
(3)解:行駛的總路程= ×(12+0)× + ×(12+60)× +60× + ×(60+24)× + ×(24+48)× +48× + ×(48+0)× ,
= +3+10+7+3+8+2,
=33.5km,
∵汽車每行駛100km耗油10L,
∴小麗駕車從甲地到乙地共耗油:33.5× =3.35升
【解析】解:(1)由圖可知,第10min到20min之間的速度最高,為60km/h;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y= (x>0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請(qǐng)結(jié)合圖象直接寫出不等式k2x+b﹣ >0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)500名員工參加安全生產(chǎn)知識(shí)測試,成績記為A,B,C,D,E共5個(gè)等級(jí),為了解本次測試的成績(等級(jí))情況,現(xiàn)從中隨機(jī)抽取部分員工的成績(等級(jí)),統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)求這次抽樣調(diào)查的樣本容量,并補(bǔ)全圖①;
(2)如果測試成績(等級(jí))為A,B,C級(jí)的定位優(yōu)秀,請(qǐng)估計(jì)該企業(yè)參加本次安全生產(chǎn)知識(shí)測試成績(等級(jí))達(dá)到優(yōu)秀的員工的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長線相交于點(diǎn)P,若PA= cm,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱中心O處,折痕為EF,若菱形ABCD的邊長為2cm,∠A=120°,則EF=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O在直線AB上,點(diǎn)A1、A2、A3 , …在射線OA上,點(diǎn)B1、B2、B3 , …在射線OB上,圖中的每一個(gè)實(shí)線段和虛線段的長均為一個(gè)單位長度,一個(gè)動(dòng)點(diǎn)M從O點(diǎn)出發(fā),按如圖所示的箭頭方向沿著實(shí)線段和以O(shè)為圓心的半圓勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長度,按此規(guī)律,則動(dòng)點(diǎn)M到達(dá)A101點(diǎn)處所需時(shí)間為秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連接AE并延長交BC的延長線于點(diǎn)F,求證:S四邊形ABCD=S△ABF . (S表示面積)
問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請(qǐng)問當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說明理由.
實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計(jì)劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25, ≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)(6,3)( , )、(4、2),過點(diǎn)p的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y= (k≠0,x>0)過點(diǎn)D.
(1)求此雙曲線的解析式;
(2)作直線AC交y軸于點(diǎn)E,連結(jié)DE,求△ CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2017年中考,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)期末模擬考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,樣本中表示成績類別為“中”的人數(shù);
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該中學(xué)九年級(jí)共有800人參加了這次數(shù)學(xué)考試,估計(jì)該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com