【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE1米,EF0.5米,測(cè)點(diǎn)D到地面的距離DG3米,到旗桿的水平距離DC40米,求旗桿的高度.

【答案】旗桿AB的高度是23

【解析】

證明△ACD∽△FED,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出,從而求出AC的長(zhǎng)度,證明四邊形BGDC為矩形,根據(jù)矩形的性質(zhì)得出BC=DG,從而求出AB.

解:∵∠ADC=∠FDE,∠ACD=∠FED90°,

∴△ACD∽△FED,

,

解得AC20

ABBG,DGBGDCAB,

∴∠ABG=∠BGD=∠DCB90°

∴四邊形BGDC是矩形,

BCDG3

ABAC+BC20+323米.

答:旗桿AB的高度是23

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.

1)求yx之間的函數(shù)關(guān)系式;

2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?

3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某貨車銷售公司,分別試銷售兩種型號(hào)貨車各一個(gè)月,并從中選擇一種長(zhǎng)期銷售,設(shè)每月銷售量為x輛若銷售甲型貨車,每月銷售的利潤(rùn)為y1(萬元),已知每輛甲型貨車的利潤(rùn)為(m+6)萬元,(m是常數(shù),9m11),每月還需支出其他費(fèi)用8萬元,受條件限制每月最多能銷售甲型貨車25輛;若銷售乙型貨車,每月的利潤(rùn)y2(萬元)x的函數(shù)關(guān)系式為y2=ax2+bx-25,且當(dāng)x10時(shí),y220,當(dāng)x20時(shí),y255,受條件限制每月最多能銷售乙型貨車40輛.

(1)分別求出y1、y2x的函數(shù)關(guān)系式,并確定x的取值范范圍;

(2)分別求出銷售這兩種貨車的最大月利潤(rùn);(最大利潤(rùn)能求值的求值,不能求值的用式子表示)

(3)為獲得最大月利潤(rùn),該公司應(yīng)該選擇銷售哪種貨車?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-5,0),以OA為半徑作半圓,點(diǎn)C是第一象限內(nèi)圓周上一動(dòng)點(diǎn),連結(jié)AC、BC,并延長(zhǎng)BC至點(diǎn)D,使CDBC,過點(diǎn)Dx軸垂線,分別交x軸、直線AC于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)OF

1)當(dāng)∠BAC30時(shí),求ABC的面積;

2)當(dāng)DE8時(shí),求線段EF的長(zhǎng);

3)在點(diǎn)C運(yùn)動(dòng)過程中,是否存在以點(diǎn)EO、F為頂點(diǎn)的三角形與ABC相似,若存在,請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB2,∠A120°,點(diǎn)E、F分別在邊AB、AD上且AEDF,則AEF面積的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲乙兩個(gè)不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字12,3,4,乙口袋中的小球上分別標(biāo)有數(shù)字2,3,4,先從甲袋中任意摸出一個(gè)小球,記下數(shù)字為m,再?gòu)囊掖忻鲆粋(gè)小球,記下數(shù)字為n

1)請(qǐng)用列表或畫樹狀圖的方法表示出所有(m,n)可能的結(jié)果;

2)若mn都是方程x25x+60的解時(shí),則小明獲勝;若m,n都不是方程x25x+60的解時(shí),則小利獲勝,問他們兩人誰(shuí)獲勝的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax23ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)c直線y=﹣x+4經(jīng)過點(diǎn)B、C

1)求拋物線的表達(dá)式;

2)過點(diǎn)A的直線ykx+k交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,連接AC,當(dāng)直線ykx+k平分ABC的面積,求點(diǎn)M的坐標(biāo);

3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當(dāng)直線ykx+k與翻折后的整個(gè)圖象只有三個(gè)交點(diǎn)時(shí),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線yx2+bx+cx軸交于A(﹣10),B20)兩點(diǎn),與y軸交于點(diǎn)C

(1)求該拋物線的解析式及點(diǎn)C的坐標(biāo);

(2)直線y=﹣x2與該拋物線在第四象限內(nèi)交于點(diǎn)D,與x軸交于點(diǎn)F,連接AC,CD,線段AC與線段DF交于點(diǎn)G,求證:AGF≌△CGD;

(3)直線ymm0)與該拋物線的交點(diǎn)為M,N(點(diǎn)M在點(diǎn)N的左側(cè)),點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)M,點(diǎn)H的坐標(biāo)為(10),若四邊形NHOM的面積為,求點(diǎn)HOM的距離d

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),若ABC的面積為SABC36cm2,則梯形EDBC的面積SEDBC為( 。

A.9B.18C.27D.30

查看答案和解析>>

同步練習(xí)冊(cè)答案