【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F

1)求證:AE=EF

2)如圖2,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn)其余條件不變,(1)中的結(jié)論是否仍然成立?  ;(填成立不成立);

3)如圖3,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)證明,若不成立說明理由.

【答案】1)證明見解析;2)成立;(3)成立證明見解析.

【解析】試題分析:1)取AB中點(diǎn)M,連接EM,求出BM=BE,得出∠BME=45°,求出∠AME=ECF=135°,求出∠MAE=FEC,根據(jù)ASA推出AMEECF全等即可;

2)截取BE=BM,連接EM,求出AM=EC,得出∠BME=45°,求出∠AME=ECF=135°,求出∠MAE=FEC,根據(jù)ASA推出AMEECF全等即可;

3)在BA的延長(zhǎng)線上取一點(diǎn)N,使AN=CE,連接NE,根據(jù)已知利用ASA判定ANE≌△ECF,因?yàn)槿热切蔚膶?duì)應(yīng)邊相等,所以AE=EF

試題解析:1)證明:取AB中點(diǎn)M,連接EM,

AB=BC,EBC中點(diǎn),MAB中點(diǎn),

AM=CE=BE

∴∠BME=BME=45°,

∴∠AME=135°=ECF,

∵∠B=90°,

∴∠BAE+AEB=90°,

∵∠AEF=90°

∴∠AEB+FEC=90°,

∴∠BAE=FEC

AMEECF中,

∴△AME≌△ECFASA),

AE=EF;

2)成立,

理由是:如圖,在AB上截取BM=BE,連接ME,

∵∠B=90°,

∴∠BME=BEM=45°,

∴∠AME=135°=ECF

AB=BC,BM=BE,

AM=EC,

AMEECF中,

∴△AME≌△ECFASA),

AE=EF;

3)成立.

證明:如圖,在BA的延長(zhǎng)線上取一點(diǎn)N.使AN=CE,連接NE,

BN=BE

∴∠N=NEC=45°,

CF平分∠DCG

∴∠FCE=45°,

∴∠N=ECF

∵四邊形ABCD是正方形,

ADBE,

∴∠DAE=BEA,即∠DAE+90°=BEA+90°,

∴∠NAE=CEF

∴△ANE≌△ECFASA),

AE=EF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a+b=5,ab=2,則(a﹣2)(3b﹣6)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADC分別在AC的兩側(cè),∠BAC:∠B:∠ACB=4:3:2,且∠DAC=40°.
(1)試說明AD∥BC.
(2)若AB與CD也平行,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)送彩電下鄉(xiāng),國(guó)家決定對(duì)購(gòu)買彩電的農(nóng)戶實(shí)行政府補(bǔ)貼.規(guī)定每購(gòu)買一臺(tái)彩電,政府補(bǔ)貼若干元,經(jīng)調(diào)查某商場(chǎng)銷售彩電臺(tái)數(shù)y(臺(tái))與補(bǔ)貼款額x(元)之間大致滿足如圖所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼款額x的不斷增大,銷售量也不斷增加,但每臺(tái)彩電的收益Z(元)會(huì)相應(yīng)降低且Z與x之間也大致滿足如圖所示的一次函數(shù)關(guān)系。

(1)在政府未出臺(tái)補(bǔ)貼措施前,該商場(chǎng)銷售彩電的總收益額為多少元?

(2)在政府補(bǔ)貼政策實(shí)施后,分別求出該商場(chǎng)銷售彩電臺(tái)數(shù)y和每臺(tái)家電的收益z與政府補(bǔ)貼款額x之間的函數(shù)關(guān)系式;

(3)要使該商場(chǎng)銷售彩電的總收益w(元)最大,政府應(yīng)將每臺(tái)補(bǔ)貼款額x定為多少并求出總收益w的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種飲料,每瓶進(jìn)價(jià)為4元.經(jīng)市場(chǎng)調(diào)查表明,當(dāng)售價(jià)在5元到8元之間(含5元,8元)浮動(dòng)時(shí),每瓶售價(jià)每增加1元,日均銷售量減少40瓶;當(dāng)售價(jià)為每瓶為6元時(shí),日均銷售量為120瓶.問:銷售價(jià)格定為每瓶多少元時(shí),所得日均毛利潤(rùn)(每瓶毛利潤(rùn)=每瓶售價(jià)-每瓶進(jìn)價(jià))最大?最大日均毛利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象的對(duì)稱軸是直線x=2,且圖象過點(diǎn)(1,2),與一次函數(shù)y=x+m的圖象交于(0,-1).

求兩個(gè)函數(shù)解析式;

求兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“愛我永州”中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:

甲:8、7、9、8、8

乙:7、9、6、9、9

則下列說法中錯(cuò)誤的是(

A.甲、乙得分的平均數(shù)都是8

B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9

C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6

D.甲得分的方差比乙得分的方差小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)已知ABC和ADE是等腰直角三角形,ACB=ADE=90°,點(diǎn)F為BE中點(diǎn),連結(jié)DF、CF.

(1)如圖1, 當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請(qǐng)直接寫出此時(shí)線段DF、CF的數(shù)量關(guān)系位置關(guān)系(不證明);

(2)如圖2,在(1)的條件下ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請(qǐng)你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷;

(3)如圖3,在(1)的條件下ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC=,求此時(shí)線段CF的長(zhǎng)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若方程2(2x﹣1)=3x+1與關(guān)于x的方程2ax=(a+1)x-6的解相同,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案