【題目】如圖,ABC中,∠C=90°,∠B=30°,以A為圓心、任意長為半徑畫弧分別交AB,AC于點MN,再分別以M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,給出下列說法:①DM=DN;②∠ADC=60°;③點DAB的中垂線上;④SDAC:SABC=1:3,其中正確的個數(shù)是(

A.1B.2C.3D.4

【答案】D

【解析】

根據(jù)作圖的過程可以判定AD是∠BAC的角平分線,再根據(jù)全等三角形的判定定理,垂直平分線的判定方法,含30°的直角三角形的性質(zhì)逐項分析可得正確選項.

解:①如圖,連接DM,DN,

根據(jù)作圖的過程可知,AD是∠BAC的平分線,則∠MAD=NAD,AM=AN,AD=AD,SAS易證△ADM≌△AND,則DM=DN,故①正確;

②∠C=90°,∠B=30°,則∠BAC=60°, 由作圖知AD是∠BAC的平分線,所以∠DAC=30°, ADC=60°,故②正確;

③由②可得∠DAB=30°=B,所以AD=BD,所以點DAB的中垂線上,故③正確;

④∠C=90°,∠DAC =30°,所以AD=2CD,又AD=BD,所以BC=3CD,所以SDAC:SABC=1:3,故④正確;

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩種糖果,原價分別為每千克a元和b元.根據(jù)調(diào)查,將兩種糖果按甲種糖果x千克與乙種糖果y千克的比例混合,取得了較好的銷售效果.現(xiàn)在糖果價格有了調(diào)整:甲種糖果單價下降15%,乙種糖果單價上漲20%,但按原比例混合的糖果單價恰好不變,則等于( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C是直線l上的三個點,∠DAB=∠DBE=∠ECBa,且BDBE

1)求證:ACAD+CE

2)若a120°,點F在直線l的上方,BEF為等邊三角形,補全圖形,請判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖中的圖象(折線ABCDE)描述了一汽車在某一直道上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系.根據(jù)圖中提供的信息,給出下列說法:

①汽車共行駛了120千米;

②汽車在行駛途中停留了0.5小時;

③汽車在整個行駛過程中的平均速度為千米/時;

④汽車自出發(fā)后3小時至4.5小時之間行駛的速度在逐漸減少.

其中正確的說法有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC平分∠BAD,∠B+∠D180°,CEAD于點E,AD12 cmAB7 cm,求DE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=x2+bx+c的圖像與x 軸交于A、B兩點,與y軸交于點C,OB=OC.點D在函數(shù)圖像上,CD//x軸,且CD=2,直線l 是拋物線的對稱軸,E是拋物線的頂點.

(1)求b、c 的值;

(2)如圖,連接BE,線段OC 上的點F 關(guān)于直線l 的對稱點F 恰好在線段BE上,求點F的坐標;

(3)如圖,動點P在線段OB上,過點P x 軸的垂線分別與BC交于點M,與拋物線交于點N.試問:拋物線上是否存在點Q,使得△PQN△APM的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的方程

是方程的一個根,求的值和方程的另一根;

為何實數(shù)時,方程有實數(shù)根;

,是方程的兩個根,且,試求實數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,多項式的因式分解就是將一個多項式化成幾個整式的積的形式.通過因式分解,我們常常將一個次數(shù)比較高的多項式轉(zhuǎn)化成幾個次數(shù)較低的整式的積,來達到降次化簡的目的.這個思想可以引領(lǐng)我們解決很多相對復(fù)雜的代數(shù)問題.

例如:方程就可以這樣來解:

解:原方程可化為:

所以或者

解方程得:

所以原方程的解:,

根據(jù)你的理解,結(jié)合所學知識,解決以下問題:

1)解方程:

2)已知的三邊為4、x、y,請你判斷代數(shù)式的值的符號.

查看答案和解析>>

同步練習冊答案