如圖所示,AB是⊙O的一固定直徑,它把⊙O分成上、下兩個(gè)半圓,自上半圓上一點(diǎn)C作弦CD⊥AB.∠OCD的平分線交⊙O于點(diǎn)P,當(dāng)點(diǎn)C在上半圓(不包括A、B兩點(diǎn))上移動(dòng)時(shí),則點(diǎn)P (   ) 。

A.到CD的距離保持不變      B.等分   
C.隨C點(diǎn)的移動(dòng)而移動(dòng)         D.位置不變 
D

試題分析:連接OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,即有OP∥CD,則OP⊥AB,即可得到OP平分半圓APB.
連接OP,如圖,

∵CP平分∠OCD,
∴∠1=∠2,
而OC=OP,有∠1=∠3,
∴∠2=∠3,
∴OP∥CD,
又∵弦CD⊥AB,
∴OP⊥AB,
∴OP平分半圓APB,即點(diǎn)P是半圓的中點(diǎn).
故選B.
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知⊙與⊙相交于、兩點(diǎn),點(diǎn)在⊙上,為⊙上一點(diǎn)(不與,,重合),直線與⊙交于另一點(diǎn)。

(1)如圖(1),若是⊙的直徑,求證:;(4分)
(2)如圖(2),若是⊙外一點(diǎn),求證:;(4分)
(3)如圖(3),若是⊙內(nèi)一點(diǎn),判斷(2)中的結(jié)論是否成立。(3分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,某公園的一座石拱橋是圓弧形(劣。,其跨度AB為24米,拱的半徑為13米,則拱高CD為(     )
A.5米B.7米C.5D.8米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知⊙O的半徑為8cm,點(diǎn)A為半徑OB的延長(zhǎng)線上一點(diǎn),射線AC切⊙O于點(diǎn)C,BC的長(zhǎng)為,求線段AB的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PC切⊙O于點(diǎn)C,PA過(guò)點(diǎn)O且交⊙O于點(diǎn)A,B,若PC=6cm,PB=4cm,則⊙O的半徑為   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

下右圖中三個(gè)圓的半徑都是2厘米,求陰影部分的面積共是多少平方厘米?(π取3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

兩圓半徑分別是方程的兩根,當(dāng)圓心距等于5時(shí),兩圓的位置關(guān)系是(    )。
A.相交。B.外離。C.外切。D.內(nèi)切。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等邊△ABC中,AD⊥BC于點(diǎn)D,一個(gè)直徑與AD相等的圓與BC相切于點(diǎn)E,與AB相切于點(diǎn)F,連接EF。

(1)判斷EF與AC的位置關(guān)系(不必說(shuō)明理由);;
(2)如圖(2),過(guò)E作BC的垂線,交圓于G,連接AG,判斷四邊形ADEG的形狀,并說(shuō)明理由。
(3)求證:AC與GE的交點(diǎn)O為此圓的圓心.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如下圖所示的圖案中,弧=弧=弧=弧=60°,繞中心O至少旋轉(zhuǎn)________度后,能與原來(lái)的圖案重合。

查看答案和解析>>

同步練習(xí)冊(cè)答案