【題目】如圖,矩形的頂點(diǎn)、分別在軸和軸上,點(diǎn)的坐標(biāo)為,雙曲線,的圖象經(jīng)過上的點(diǎn)與交于點(diǎn),連接,若若是的中點(diǎn)﹒
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)是邊上一點(diǎn),若和相似,求的解析式;
(3)若點(diǎn)也在此反比例函數(shù)的圖象上(其中),過點(diǎn)作軸的垂線,交軸于點(diǎn),若線段上存在一點(diǎn),使得的面積是,設(shè)點(diǎn)的縱坐標(biāo)為,求的值.
【答案】(1)點(diǎn)的坐標(biāo)為;(2)的解析式為:,或;(3).
【解析】
(1)先求出點(diǎn)E的坐標(biāo),求出雙曲線的解析式,再求出CD=1,即可得出點(diǎn)D的坐標(biāo);
(2)分兩種情況:①△FBC和△DEB相似,當(dāng)BD和BC是對應(yīng)邊時(shí),,求出CF,得出F的坐標(biāo),用待定系數(shù)法即可求出直線BF的解析式;
②當(dāng)BD與CF是對應(yīng)邊時(shí),,求出CF、OF,得出F的坐標(biāo),用待定系數(shù)法即可求出直線BF的解析式;
(3)由題意得出m(3m+6 )=3,即m2+2m﹣1=0,由三角形的面積得出mn=1,代入得出n2﹣2n=1,即可得出所求式子的值.
(1)∵四邊形ABCD是矩形,∴OA=BC,AB=OC.
∵B(2,3),E為AB的中點(diǎn),∴AB=OC=3,OA=BC=2,AE=BEAB,∴E(2,),∴k=23,∴雙曲線解析式為:y;
∵點(diǎn)D在雙曲線y(x>0)上,∴OCCD=3,∴CD=1,∴點(diǎn)D的坐標(biāo)為:(1,3);
(2)∵BC=2,CD=1,∴BD=1,分兩種情況:
①△FBC和△DEB相似,當(dāng)BD和BC是對應(yīng)邊時(shí),,即,∴CF=3,∴F(0,0),即F與O重合,設(shè)直線BF的解析式為:y=kx,把點(diǎn)B(2,3)代入得:k,∴直線/span>BF的解析式為:yx;
②△FBC和△DEB相似,當(dāng)BD與CF是對應(yīng)邊時(shí),,即,∴CF,∴OF=3,∴F(0,),設(shè)直線BF的解析式為:y=ax+c,把B(2,3),F(0,)代入得:,解得:a,c,∴直線BF的解析式為:y;
綜上所述:若△FBC和△DEB相似,BF的解析式為:yx或y;
(3)∵點(diǎn)P(m,3m+6)在反比例函數(shù)y的圖象上,∴m(3m+6 )=3,整理得:m2+2m﹣1=0.
∵PQ⊥x軸,∴Q點(diǎn)的坐標(biāo)為:(m,n).
∵△OQM的面積為,∴OMQM,∴OMQM=1.
∵m>0,∴mn=1,∴m,代入m2+2m﹣1=0得:1=0,即n2﹣2n﹣1=0,∴n2﹣2n=1,∴n2﹣2n+9=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形的邊長為1,點(diǎn)在邊上,若,且交正方形外角的平分線于點(diǎn).
(1)如圖1,若點(diǎn)是邊的中點(diǎn),是邊的中點(diǎn),連接,求證:.
(2)如圖2,若點(diǎn)在線段上滑動(dòng)(不與點(diǎn),重合).
①在點(diǎn)滑動(dòng)過程中,是否一定成立?請說明理由;
②在如圖所示的直角坐標(biāo)系中,當(dāng)點(diǎn)滑動(dòng)到某處時(shí),點(diǎn)恰好落在直線上,求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半圓⊙O‘與y軸正半軸交于點(diǎn)C,連接BC,AC.CD是半圓⊙O’的切線,AD⊥CD于點(diǎn)D
(1)求證:∠CAD =∠CAB(3分)
(2)已知拋物線過A、B、C三點(diǎn),AB=10,tan∠CAD=.
① 求拋物線的解析式(3分)
② 判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由(3分);
③ 在拋物線上是否存在一點(diǎn)P,使四邊形PBCA是直角梯形.若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫求解過程);若不存在,請說明理由(3分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為點(diǎn)D,點(diǎn)E,BE、CD相交于點(diǎn)O.∠1=∠2,則圖中全等三角形共有( )
A. 4對B. 3對C. 2對D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且m>n.(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 ;
(2)若每塊小矩形的面積為10cm2,兩個(gè)大正方形和兩個(gè)小正方形的面積和為58cm2,試求m+n的值
(3)②圖中所有裁剪線(虛線部分)長之和為 cm.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請用概率的知識(shí)加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某童裝店在服裝銷售中發(fā)現(xiàn):進(jìn)貨價(jià)每件60元,銷售價(jià)每件100元的某童裝每天可售出20件為了迎接“六一兒童節(jié)”,童裝店決定采取適當(dāng)?shù)拇黉N措施,擴(kuò)大銷售量,增加盈利經(jīng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么每天就可多售出2件.
如果童裝店想每天銷售這種童裝盈利1050元,同時(shí)又要使顧客得到更多的實(shí)惠,那么每件童裝應(yīng)降價(jià)多少元?
每件童裝降價(jià)多少元時(shí),童裝店每天可獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com