【題目】A、BC三地在同一直線上,甲、乙兩車分別從AB兩地相向勻速行駛,甲車先出發(fā)2小時(shí),甲車到達(dá)B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過一段時(shí)間后兩車同時(shí)到達(dá)C地,設(shè)兩車之間的距離為y(千米),甲行駛的時(shí)間x(小時(shí)).yx的關(guān)系如圖所示,則B、C兩地相距_____千米.

【答案】1320

【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以求得甲乙兩車的速度,再根據(jù)“路程=速度×?xí)r間”,即可解答本題.

解:設(shè)甲車的速度為a千米/小時(shí),乙車的速度為b千米/小時(shí),

,解得,

∴AB兩地的距離為:80×9720千米,

設(shè)乙車從B地到C地用的時(shí)間為x小時(shí),

60x801+10%)(x+29),

解得,x22,

B、C兩地相距:60×221320(千米)

故答案為:1320

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸的正半軸交于點(diǎn),與軸交于點(diǎn),的面積為2,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在射線上運(yùn)動(dòng),動(dòng)點(diǎn)出發(fā),沿軸的正半軸與點(diǎn)同時(shí)以相同的速度運(yùn)動(dòng),過軸交直線.

(1)求直線的解析式.

(2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),設(shè)的面積為,點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,求的函數(shù)關(guān)系式(直接寫出自變量的取值范圍).

(3)過點(diǎn)軸交直線,在運(yùn)動(dòng)過程中(點(diǎn)不與點(diǎn)重合),是否存在某一時(shí)刻(),使是等腰三角形?若存在,求出時(shí)間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),與軸交于點(diǎn)、,點(diǎn)坐標(biāo)為

求該拋物線的解析式;

拋物線的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);

點(diǎn)是線段上的動(dòng)點(diǎn),過點(diǎn),交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

若平行于軸的動(dòng)直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.問:是否存在這樣的直線,使得是等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+yx相交于點(diǎn)A,與x軸交于點(diǎn)B.

(1)填空:A的坐標(biāo)是_______B的坐標(biāo)是___________;

(2)直線y=﹣x+上有點(diǎn)P(mn),且點(diǎn)P在第四象限,設(shè)△AOP的面積為S,請(qǐng)求出Sm的函數(shù)關(guān)系式;

(3)在直線OA上,是否存在一點(diǎn)D,使得△DOB是等腰三角形?如果存在,試求出所有符合條件的點(diǎn)D的坐標(biāo),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖 1,△ABC 和△ADE 都是等腰直角三角形,∠BAC 和∠DAE 是直角,連接BD,CE 相交于點(diǎn) F,則∠BFC= °

2)如圖 2,△ABC 和△ADE 都是等邊三角形,連接 BD,CE 相交于點(diǎn) F,則∠BFC= °

3)如圖 3,△ABC 和△ADE 都是等腰三角形,AB=AC,AD=AE,且∠BAC=DAE,連接 BD,CE相交于點(diǎn) F,請(qǐng)猜想∠BFC 與∠BAC 有怎樣的大小關(guān)系?請(qǐng)證明你的猜想

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:把形如的二次三項(xiàng)式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本形式是完全平方公式的逆運(yùn)用,即

例如:________

________

________.

以上是的三種不同形式的配方(即“余項(xiàng)”分別是常數(shù)、一次項(xiàng)、二次項(xiàng)–見橫線上的部分).根據(jù)閱讀材料解決以下問題:

仿照上面的例子,寫出三種不同形式的配方;

配方(至少寫出兩種形式);

已知,求、、的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,分別是線段,上的點(diǎn),連接,使四邊形為正方形,若點(diǎn)上的動(dòng)點(diǎn),連接,將矩形沿折疊使得點(diǎn)落在正方形的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為,則線段的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明去離家2.4 km的體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門票還放在家中,此時(shí)離比賽還有45 min,于是他立即步行(勻速)回家取票,在家取票用時(shí)2 min,取到票后,他馬上騎自行車(勻速)趕往體育館.已知小明騎自行車從家趕往體育館比從體育館步行回家所用時(shí)間少20 min,騎自行車的速度是步行速度的3倍.

(1)小明步行的速度是多少?

(2)小明能否在球賽開始前趕到體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)ACM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案