【題目】關(guān)于三角函數(shù)有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ

cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ

tan(α+β)=(1﹣tanαtanβ≠0)

tan(α﹣β)=(1+tanαtanβ≠0)

利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來(lái)求值.

如:tan105°=tan(45°+60°)=

根據(jù)上面的知識(shí),你可以選擇適當(dāng)?shù)墓浇鉀Q下面問(wèn)題:

如圖,兩座建筑物AB和DC的水平距離BC為24米,從點(diǎn)A測(cè)得點(diǎn)D的俯角α=15°,測(cè)得點(diǎn)C的俯角β=75°,求建筑物CD的高度.

【答案】48m

【解析】試題分析:首先根據(jù)題目中給出的公式求出tan75°和tan15°的值,過(guò)AAECDCD延長(zhǎng)線(xiàn)于E,根據(jù)Rt△AEC的三角形函數(shù)值得出CE的值,然后根據(jù)Rt△AED的三角形函數(shù)值得出DE的長(zhǎng)度,最后根據(jù)CD=CEDE得出答案.

試題解析:解:∵tan75°=tan30°+45°===2+,

tan15°=tan45°﹣30°==2﹣

如圖,過(guò)AAECDCD延長(zhǎng)線(xiàn)于E, RtAEC中,AE=BC=24m,CAE=75°,

tan75°=CE=AEtan75°=48+24m,

RtAED中,tanDAE=tan15°=, DE=AEtan15°=48﹣24m,

CD=CE﹣DE=48m

建筑物CD的高度是48m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人勻速?gòu)耐坏攸c(diǎn)到1500米處的圖書(shū)館看書(shū),甲出發(fā)5分鐘后,乙以50/分的速度沿同一路線(xiàn)行走.設(shè)甲乙兩人相距s(米),甲行走的時(shí)間為t(分),s關(guān)于t的函數(shù)圖象的一部分如圖所示.下列結(jié)論正確的個(gè)數(shù)是(  )

1t5時(shí),s150;(2t35時(shí),s450;(3)甲的速度是30/分;(4t12.5時(shí),s0

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)Ay軸正半軸上,頂點(diǎn)Cx軸正半軸上,拋物線(xiàn)a<0)的頂點(diǎn)為D,且經(jīng)過(guò)點(diǎn)AB.若△ABD為等腰直角三角形,則a的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,在平面直角坐標(biāo)系中,A(3,4),B(0,2).

(1)OAB繞O點(diǎn)旋轉(zhuǎn)180°得到OA1B1,請(qǐng)畫(huà)出OA1B1,并寫(xiě)出A1,B1的坐標(biāo);

(2)判斷以A,B,A1,B1為頂點(diǎn)的四邊形的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,A點(diǎn)坐標(biāo)是(1,3)B點(diǎn)坐標(biāo)是(5,1)C點(diǎn)坐標(biāo)是(11)

(1)求△ABC的面積是____;

(2)求直線(xiàn)AB的表達(dá)式;

(3)一次函數(shù)ykx+2與線(xiàn)段AB有公共點(diǎn),求k的取值范圍;

(4)y軸上有一點(diǎn)P且△ABP與△ABC面積相等,則P點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】立定跳遠(yuǎn)是體育中考選考項(xiàng)目之一,體育課上老師記錄了某同學(xué)的一組立定跳遠(yuǎn)成績(jī)?nèi)绫恚?/span>

成績(jī)(m

2.3

2.4

2.5

2.4

2.4

則下列關(guān)于這組數(shù)據(jù)的說(shuō)法,正確的是( 。

A.眾數(shù)是2.3B.平均數(shù)是2.4

C.中位數(shù)是2.5D.方差是0.01

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境

小明和小麗共同探究一道數(shù)學(xué)題:

如圖①,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),∠BAD=65°,∠DAC=50°,AD=2,

AC

探索發(fā)現(xiàn)

小明的思路是:延長(zhǎng)AD至點(diǎn)E,使DE=AD,構(gòu)造全等三角形.

小麗的思路是:過(guò)點(diǎn)CCEAB,交AD的延長(zhǎng)線(xiàn)于點(diǎn)E,構(gòu)造全等三角形.

選擇小明、小麗其中一人的方法解決問(wèn)題情境中的問(wèn)題.

類(lèi)比應(yīng)用

如圖②,在四邊形ABCD中,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,點(diǎn)OBD的中點(diǎn),

ABAC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長(zhǎng)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年深圳市創(chuàng)建文明城市期間,某區(qū)教育局為了了解全區(qū)中學(xué)生對(duì)課外體育運(yùn)動(dòng)項(xiàng)目的喜歡程度,隨機(jī)抽取了某校八年級(jí)部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每人限選一種體育運(yùn)動(dòng)項(xiàng)目).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)這次活動(dòng)一共調(diào)查了 名學(xué)生;

2)在扇形統(tǒng)計(jì)圖中,跳繩所在扇形圓心角等于 度;

3)補(bǔ)全條形統(tǒng)計(jì)圖;

4)若該校有學(xué)生2000人, 請(qǐng)你估計(jì)該校喜歡足球的學(xué)生約有 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)(ay1)(a+2,y2)都在反比例函數(shù)yk0)的圖象上,若y1y2,則a的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案