精英家教網 > 初中數學 > 題目詳情

在坐標平面內,與原點距離為5的點,在P(5,5),Q(-5,5),M(-5,-5)

N(5,-5)中,

[    ]

A.只有點P正確         B.只有點P、M正確

C.點P、Q、M、N都正確      D.點P、Q、M、N都不正確

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

先將一矩形ABCD置于直角坐標系中,使點A與坐標系的原點重合,邊AB,AD分別落在x軸、y軸上(如圖1),再將此矩形在坐標平面內按逆時針方向繞原點旋轉30°(如圖2),若AB=4,BC=3,則圖1和圖2中點B點的坐標為
 
,點C的坐標
 

精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

先將一矩形ABCD置于直角坐標系中,使點A與坐標系的原點重合,邊AB、AD分別落在x軸、y軸上(如左圖),再將此矩形在坐標平面內按逆時針方向繞原點旋轉30°(如圖),若AB=8,BC=6,則右圖中點C的坐標為
 
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,在坐標平面內找一點G,使以點G、F、C為頂點的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點G的坐標;
(3)在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標;如果不存在,請說明理由;  
(4)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖(1),先將一矩形ABCD置于直角坐標系中,已知AB=8,BC=6,使點A與坐標系的原點重合,邊AB,AD分別落在x軸,y軸上,再將此矩形在坐標平面內按逆時針方向繞原點旋轉30°,如圖(2).
精英家教網
請你利用三角函數知識求出矩形ABCD旋轉前后點B的坐標和點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

精英家教網先閱讀短文,再回答短文后面的問題.
平面內與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線,點F叫做拋物線的焦點,直線l叫做拋物線的準線.
下面根據拋物線的定義,我們來求拋物線的方程.
如上圖,建立直角坐標系xoy,使x軸經過點F且垂直于直線l,垂足為K,并使原點與線段KF的中點重合.設|KF|=p(p>0),那么焦點F的坐標為(
p
2
,0),準線l的方程為x=-
p
2

設點M(x,y)是拋物線上任意一點,點M到l的距離為d,由拋物線的定義,拋物線就是滿足|MF|=d的點M的軌跡.
∵|MF|=
(x-
p
2
)
2
+y2
,d=|x+
p
2
|∴
(x-
p
2
)
2
+y2
=|x+
p
2
|
將上式兩邊平方并化簡,得y2=2px(p>0)①
方程①叫做拋物線的標準方程,它表示的拋物線的焦點在x軸的正半軸上,坐標是(
p
2
,0),它的準線方程是x=-
p
2

一條拋物線,由于它在坐標平面內的位置不同,方程也不同.所以拋物線的標準方程還有其它的幾種形式:y2=-2px,x2=2py,x2=-2py.這四種拋物線的標準方程,焦點坐標以及準線方程列表如下:
標準方程  交點坐標  準線方程 
 y2=2px(p>0)  (
p
2
,0
 x=-
p
2
 y2=-2px(p>0)  (-
p
2
,0
 x=
p
2
 x2=2py(p>0)  (0,
p
2
 y=-
p
2
 x2=-2py(p>0)  (0,-
p
2
 y=-
p
2
解答下列問題:
(1)①已知拋物線的標準方程是y2=8x,則它的焦點坐標是
 
,準線方程是
 

②已知拋物線的焦點坐標是F(0,-6),則它的標準方程是
 

(2)點M與點F(4,0)的距離比它到直線l:x+5=0的距離小1,求點M的軌跡方程.
(3)直線y=
3
x+b
經過拋物線y2=4x的焦點,與拋物線相交于兩點A、B,求線段AB的長.

查看答案和解析>>

同步練習冊答案