【題目】ABC 中,AB=AC,點(diǎn) M BA 的延長線上,點(diǎn) N BC 的延長線上,過點(diǎn) C CDAB 交∠CAM 的平分線于點(diǎn) D

1)如圖 1,求證:四邊形 ABCD 是平行四邊形;

2)如圖 2,當(dāng)∠ABC=60°時,連接 BD,過點(diǎn) D DEBD,交 BN 于點(diǎn) E,在不添加任何輔助線的情況下,請直接寫出圖 2 中四個三角形(不包含CDE),使寫出的每個三角形的面積與CDE 的面積相等.

【答案】1)見解析;(2ABCDBC、ABD、ACD

【解析】

1)根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì)可得∠CAM=2ABC,根據(jù)角平分線的定義可得∠CAM=2MAD,等量代換得到∠ABC=MAD,進(jìn)而證得ADBC即可解決問題;

2)首先證明平行四邊形ABCD是菱形,然后證明DCE是等邊三角形,得到CE=CD=BC=AD,根據(jù)等底等高的三角形面積相等可得答案.

解:(1)∵AB=AC

∴∠ABC=ACB,

∴∠CAM=ABC+ACB=2ABC,

AD是∠CAM 的平分線,

∴∠CAM=2MAD,

∴∠ABC=MAD

ADBC,

CDAB

∴四邊形ABCD是平行四邊形;

2)∵∠ABC=60°,AB=AC,四邊形ABCD是平行四邊形,

ABC是等邊三角形,∠DCE=ABC=60°,

AB=BC

∴平行四邊形ABCD是菱形,

∴∠DBE=30°,

DEBD,

∴∠DEB=60°

DCE是等邊三角形,

CE=CD=BC=AD

ADBC,

ABC、DBCABD、ACD的面積都與CDE的面積相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,頂點(diǎn) 軸上,頂點(diǎn)在反比例函數(shù)的圖象上,已知點(diǎn) 的縱坐標(biāo)是 3,則經(jīng)過點(diǎn) 的反比例函數(shù)的解析式為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作發(fā)現(xiàn))

(1)如圖1,ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板斜邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.

①求∠EAF的度數(shù);

DEEF相等嗎?請說明理由;

(類比探究)

(2)如圖2,ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF.請直接寫出探究結(jié)果:

①∠EAF的度數(shù);

②線段AE,ED,DB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的四個頂點(diǎn)分別在矩形的各條邊上,,.有以下四個結(jié)論:①;②;③;④矩形的面積是.其中正確的結(jié)論為(

A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左),與軸交于點(diǎn),連接,點(diǎn)為二次函數(shù)圖象上的動點(diǎn).

1)若的面積為3,求拋物線的解析式;

2)在(1)的條件下,若在軸上存在點(diǎn),使得,求點(diǎn)的坐標(biāo);

3)若為對稱軸右側(cè)拋物線上的動點(diǎn),直線軸于點(diǎn),直線軸于點(diǎn),判斷的值是否為定值,若是,求出定值,若不是請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,∠B30°,點(diǎn)D、E分別在邊AC、AB上,AD14,點(diǎn)P是邊BC上一動點(diǎn),當(dāng)PD+PE的值最小時,AE15,則BE為(

A.30B.29C.28D.27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國飛人蘇炳添以647獲得2019年國際田聯(lián)伯明翰室內(nèi)賽男子60米冠軍,蘇炳添奪冠掀起跑步熱潮某校為了解該校八年級男生的短跑水平,全校八年級男生中隨機(jī)抽取了部分男生,對他們的短跑水平進(jìn)行測試,并將測試成績(滿分10)繪制成如下不完整的統(tǒng)計(jì)圖表:

組別

成績/

人數(shù)/

A

5

36

B

6

32

C

7

15

D

8

8

E

9

5

F

10

m

請你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)填空:m_____,n_____;

(2)所抽取的八年級男生短跑成績的眾數(shù)是_____分,扇形統(tǒng)計(jì)圖中E組的扇形圓心角的度數(shù)為____°

(3)求所抽取的八年級男生短跑的平均成績.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,且.

1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;

2)若點(diǎn)x軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一元二次方程ax2+bx+c0a0),下列說法:

b2,則方程ax2+bx+c0一定有兩個相等的實(shí)數(shù)根;

若方程ax2+bx+c0有兩個不等的實(shí)數(shù)根,則方程x2bx+ac0也一定有兩個不等的實(shí)數(shù)根;

c是方程ax2+bx+c0的一個根,則一定有ac+b+10成立;

x0是一元二次方程ax2+bx+c0的根,則b24ac=(2ax0+b2,其中正確的( 。

A.只有①②③B.只有①②④C.①②③④D.只有③④

查看答案和解析>>

同步練習(xí)冊答案