18.王芳在練習本上畫出了∠EAF的角平分線AG.請劉燕幫她驗證一下是否標準.劉燕從AG上選一個點D.過D點作DB⊥AE,DC⊥AF于B,C兩點,量得DB=DC=2cm,據(jù)此劉燕判斷王芳畫的角平分線是標準的,為什么?

分析 王芳畫的角平分線是標準的.證明△ABD≌△ACD(HL),得到∠BAD=∠CAD(全等三角形的對應(yīng)邊相等).

解答 解:王芳畫的角平分線是標準的.理由如下:
∵DB⊥AE,DC⊥AF
∴∠ABD=∠ACD=90°
在Rt△ABD和Rt△ACD中
$\left\{\begin{array}{l}{AD=AD}\\{DB=DC}\end{array}\right.$
∴△ABD≌△ACD(HL)
∴∠BAD=∠CAD(全等三角形的對應(yīng)邊相等).

點評 本題考查了確定數(shù)據(jù)線的性質(zhì)定理與判定定理,解決本題的關(guān)鍵是證明△ABD≌△ACD.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

8.下列說法正確的是( 。
A.單項式-$\frac{{x}^{2}}{3}$的系數(shù)-3
B.單項式$\frac{2{π}^{2}a^{4}}{3}$的指數(shù)是7
C.多項式x3y-2x2+3是四次三項式
D.多項式x3y-2x2+3的項分別為x3y,2x2,3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.為了深化改革,某校積極開展校本課程建設(shè),計劃成立“文學鑒賞”、“科學實驗”、“音樂舞蹈”和“手工編織”等多個社團,要求每位學生都自主選擇其中一個社團.為此,隨機調(diào)查了本校各年級部分學生選擇社團的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):
某校被調(diào)查學生選擇社團意向統(tǒng)計表
選擇意向所占百分比
文學鑒賞a
科學實驗35%
音樂舞蹈b
手工編織10%
其他c
根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求本次調(diào)查的學生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學生,試估計全校選擇“科學實驗”社團的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

6.如圖,下列圖形是一組按照某種規(guī)律擺放而成的圖案,則圖⑧中圓點的個數(shù)是( 。
A.64B.65C.66D.67

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.如圖,已知△ABC中,AD⊥BC于點D,BF=AC,DF=DC.
(1)求證:BE⊥AC;
(2)如果∠C=60°,CD=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.如圖,∠1=∠2,AB=AD,AC=AE.請將下面說明∠C=∠E的過程和理由補充完整.
證明:∵∠1=∠2(已知 ),
∴∠1+∠BAE=∠2+∠BAE
∴∠1+∠DAC=∠2+∠DAC,
即∠BAC=∠DAE,
在△ABC和△ADE中
$\left\{\begin{array}{l}{AB=AD(已知)}\\{AC=AE(已知)}\end{array}\right.$
∴△ABC≌△ADE(SAS)
∴∠C=∠E(全等三角形對應(yīng)角相等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.已知二次函數(shù)中x和y的部分對應(yīng)值如下表:
x-10123
y0-3-4-30
(1)求二次函數(shù)的解析式;
(2)如圖,點P是直線BC下方拋物線上一動點,當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積;
(3)在拋物線上,是否存在一點Q,使△QBC中QC=QB?若存在請直接寫出Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

7.計算:(5x2+15x)÷5x=x+3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=12cm,CD=16cm,求AB和CD之間的距離.

查看答案和解析>>

同步練習冊答案