【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎價和浮動價兩部分組成,(即出廠價=基礎價+浮動價)其中基礎價與薄板的大小無關,是固定不變的,浮動價與薄板的邊長x成正比例,在營銷過程中得到了表格中的數(shù)據(jù),已知出廠一張邊長為40cm的薄板,獲得利潤是26元.(利潤=出廠價-成本價)
薄板的邊長(cm) | 20 | 30 |
出廠價(元/張) | 50 | 70 |
(1)求一張薄板的出廠價y與邊長x之間滿足的函數(shù)關系式;
(2)求一張薄板的利潤p與邊長x之間的函數(shù)關系式;
(3)若一張薄板的利潤是34元,且成本最低,此時薄板的邊長為多少?當薄板的邊長為多少時,所獲利潤最大,求出這個最大值。
【答案】(1)y=2x+10 (2)(3)一張薄板的利潤是34元,且成本最低時薄板的邊長為20cm;當薄板的邊長為25cm時,所獲利潤最大,最大值為875元。
【解析】(1)利用待定系數(shù)法求一次函數(shù)解析式即可得出答案;
(2)首先假設一張薄板的利潤為p元,它的成本價為mx2元,由題意,得:p=y-mx2,進而得出m的值,求出函數(shù)解析式即可;
(3)利用二次函數(shù)的最值公式求出二次函數(shù)的最值即可.
解:(1)設一張薄板的邊長為x cm,它的出廠價為y元,基礎價為n元,浮動價為kx元,則y=kx+n
由表格中數(shù)據(jù)得,解得
∴y=2x+10
(2)設一張薄板的利潤為P元,它的成本價為mx2元,由題意得P= y-mx2=2x+10-mx2
將x=40,P=26代入P=2x+10-mx2中,得26= 解得m=
∴.
(3)當P=34時, x=20,x=30(舍去),
所以一張薄板的利潤是34元,且成本最低時薄板的邊長為20cm;當薄板的邊長為25cm時,所獲利潤最大,最大值為875元。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為( )
A. 8 B. 9.5 C. 10 D. 11.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2AB,E、F、G、H分別是AB,BC,CD,AD邊上的點,EG⊥FH,F(xiàn)H=2,則四邊形EFGH的面積為( )
A. 6 B. 12 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2015年中國高端裝備制造業(yè)銷售收入將超6萬億元,其中6萬億元用科學記數(shù)法可表示為( )
A.0.6×1013元
B.60×1011元
C.6×1012元
D.6×1013元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育場看臺的坡面AB與地面的夾角是37°,看臺最高點B到地面的垂直距離BC為2.4米,看臺正前方有一垂直于地面的旗桿DE,在B點用測角儀測得旗桿的最高點E的仰角為33°,已知測角儀BF的高度為1.2米,看臺最低點A與旗桿底端D之間的距離為15米(C,A,D在同一條直線上).
(1)求看臺最低點A到最高點B的坡面距離AB;
(2)一面紅旗掛在旗桿上,固定紅旗的上下兩個掛鉤G、H之間的距離為1.2米,下端掛鉤H與地面的距離為1米,要求用30秒的時間將紅旗升到旗桿的頂端,求紅旗升起的平均速度(計算結果保留兩位小數(shù))(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PQ為圓O的直徑,點B在線段PQ的延長線上,OQ=QB=1,動點A在圓O的上半圓運動(含P、Q兩點),
(1)當線段AB所在的直線與圓O相切時,求弧AQ的長(圖1);
(2)若∠AOB=120°,求AB的長(圖2);
(3)如果線段AB與圓O有兩個公共點A、M,當AO⊥PM于點N時,求 的值(圖3).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com