【題目】在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為θ(0°<θ<180°),得到△A'B'C.
(1)如圖1,當(dāng)AB∥CB'時(shí),設(shè)A'B'與CB相交于點(diǎn)D,求證:△A'CD是等邊三角形.
(2)若E為AC的中點(diǎn),P為A'B'的中點(diǎn),則EP的最大值是多少,這時(shí)旋轉(zhuǎn)角θ為多少度.
【答案】(1)見解析;(2)見解析.
【解析】
(1)當(dāng)AB∥CB′時(shí),∠BCB′=∠B=∠B′=30°,則∠A′CD=90°﹣∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可證:△A′CD是等邊三角形;
(2)連接CP,當(dāng)E、C、P三點(diǎn)共線時(shí),EP最長(zhǎng),根據(jù)圖形求出此時(shí)的旋轉(zhuǎn)角及EP的長(zhǎng).
(1)證明:∵AB∥CB′,
∴∠B=∠BC B′=30°,
∴∠BC A′=90°﹣30°=60°,
∵∠A′=∠A=60°,
∴△A′CD是等邊三角形;
(2)如圖,連接CP,當(dāng)△ABC旋轉(zhuǎn)到E、C、P三點(diǎn)共線時(shí),EP最長(zhǎng),
此時(shí)θ=∠ACA1=120°,
∵∠B′=30°,∠A′CB′=90°,
設(shè)AC=a,
∴A′C=AC=A′B′=a,
∵AC中點(diǎn)為E,A′B′中點(diǎn)為P,∠A′CB′=90°
∴CP=A′B′=a,EC=a,
∴EP=EC+CP=a+a=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則DF的長(zhǎng)等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)E是菱形ABCD邊BC上的中點(diǎn),∠ABC=30°,P是對(duì)角線BD上一點(diǎn),且PC+PE=.則菱形ABCD面積的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是( 。
A. ac>0
B. 當(dāng)x>1時(shí),y隨x的增大而增大
C. 2a+b=1
D. 方程ax2+bx+c=0有一個(gè)根是x=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線長(zhǎng)為.點(diǎn)E、F分別在正方形ABCD的邊AB、CD上,四邊形EFMG的邊MG分別與正方形ABCD的邊AB、BC交于點(diǎn)H、K,邊MF與正方形ABCD的邊BC交于點(diǎn)N.若四邊形EFDA沿直線EF折疊后能與四邊形EFMG重合,則圖中四個(gè)三角形△EGH、△HBK、△KMN、△NCF的周長(zhǎng)的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是用鋼絲制作的一個(gè)幾何探究工具,其中△ABC內(nèi)接于⊙G,AB是⊙G的直徑,AB=6,AC=2.現(xiàn)將制作的幾何探究工具放在平面直角坐標(biāo)系中(如圖2),然后點(diǎn)A在射線OX上由點(diǎn)O開始向右滑動(dòng),點(diǎn)B在射線OY上也隨之向點(diǎn)O滑動(dòng)(如圖3),當(dāng)點(diǎn)B滑動(dòng)至與點(diǎn)O重合時(shí)運(yùn)動(dòng)結(jié)束. 在整個(gè)運(yùn)動(dòng)過程中,點(diǎn)C運(yùn)動(dòng)的路程是( )
A. 4 B. 6 C. 4﹣2 D. 10﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線C:y=x2+3x-10平移到C′.若兩條拋物線C,C′關(guān)于直線x=1對(duì)稱,則下列平移方法中正確的是( )
A. 將拋物線C向右平移個(gè)單位 B. 將拋物線C向右平移3個(gè)單位
C. 將拋物線C向右平移5個(gè)單位 D. 將拋物線C向右平移6個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,BC=8,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,邊CD′與⊙O相交于點(diǎn)F,則CF的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com