【題目】中,,.設(shè)為最長(zhǎng)邊.當(dāng)時(shí),是直角三角形;當(dāng)時(shí),利用代數(shù)式的大小關(guān)系,探究的形狀(按角分類(lèi)).

1)當(dāng)三邊分別為68、9時(shí),______三角形;當(dāng)三邊分別為6、811時(shí),______三角形.

2)猜想,當(dāng)______時(shí),為銳角三角形;當(dāng)______時(shí),為鈍角三角形.

3)判斷當(dāng),時(shí),的形狀,并求出對(duì)應(yīng)的的取值范圍.

【答案】1)銳角,鈍角.(2,;(3時(shí),為鈍角三角形

【解析】

(1)利用勾股定理列式求出兩直角邊為6、8時(shí)的斜邊的值,然后作出判斷即可;
(2)根據(jù)(1)中的計(jì)算作出判斷即可;
(3)根據(jù)三角形的任意兩邊之和大于第三邊求出最長(zhǎng)邊c點(diǎn)的最大值,然后得到c的取值范圍,然后分情況討論即可得.

1)銳角,鈍角.(2,

3為最長(zhǎng)邊,

當(dāng),,即時(shí),為銳角三角形;當(dāng),,即時(shí),為直角三角形;當(dāng),,即時(shí),為鈍角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】感知:如圖①,四邊形ABCDCEFG均為正方形.易知BE=DG

探究:如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG

應(yīng)用:如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)GAD的延長(zhǎng)線上.若AE=3ED, ∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:小騰遇到這樣一個(gè)問(wèn)題:如圖1,在ABC中,點(diǎn)D在線段BC上,BAD=75°,CAD=30°,AD=2,BD=2DC,求AC的長(zhǎng).

小騰發(fā)現(xiàn),過(guò)點(diǎn)C作CEAB,交AD的延長(zhǎng)線于點(diǎn)E,通過(guò)構(gòu)造ACE,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決(如圖 2).

請(qǐng)回答:ACE的度數(shù)為 ,AC的長(zhǎng)為

參考小騰思考問(wèn)題的方法,解決問(wèn)題:

如圖 3,在四邊形 ABCD中,BAC=90°,CAD=30°,ADC=75°,AC與BD交于點(diǎn)E,AE=2,BE=2ED,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一空曠場(chǎng)地上設(shè)計(jì)一落地為矩形ABCD的小屋,AB+BC10m.拴住小狗的10m長(zhǎng)的繩子一端固定在B點(diǎn)處,小狗在不能進(jìn)入小屋內(nèi)的條件下活動(dòng),其可以活動(dòng)的區(qū)域面積為Sm2).①如圖1,若BC4m,則S m2.②如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其它條件不變則在BC的變化過(guò)程中,當(dāng)S取得最小值時(shí),邊BC的長(zhǎng)為 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,A=30°,以AB為直徑的⊙OBC于點(diǎn)D,交AC于點(diǎn)E,連結(jié)DE,過(guò)點(diǎn)BBP平行于DE,交⊙O于點(diǎn)P,連結(jié)EP、CP、OP.

(1)BD=DC嗎?說(shuō)明理由;

(2)求∠BOP的度數(shù);

(3)求證:CP是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的中線,分別是延長(zhǎng)線上的點(diǎn),且,連接,下列說(shuō)法:①的面積相等,②,③,④,⑤,其中一定正確的答案有______________.(只填寫(xiě)正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿射線2的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)為等腰三角形時(shí),的值為(

A.B.124C.12D.124

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋中裝有5個(gè)黃球、13個(gè)黑球和22個(gè)紅球,它們除顏色外都相同。

1)求從袋中摸出一個(gè)球是黃球的概率;

2)現(xiàn)從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個(gè)球是黃球的概率不小于,問(wèn)至少取出了多少個(gè)黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AB為直徑的⊙O外接于ABC,過(guò)A點(diǎn)的切線APBC的延長(zhǎng)線交于點(diǎn)PAPB的平分線分別交AB,AC于點(diǎn)DE,其中AE,BDAEBD)的長(zhǎng)是一元二次方程x2﹣5x+6=0的兩個(gè)實(shí)數(shù)根.

(1)求證:PABD=PBAE;

(2)在線段BC上是否存在一點(diǎn)M,使得四邊形ADME是菱形?若存在,請(qǐng)給予證明,并求其面積;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案