【題目】(1)、菱形的邊長1,面積為,則的值為( )
A、 B、 C、 D、
(2)、如圖,ABCD是正方形,E是CF上一點,若DBEF是菱形,則∠EBC=
【答案】(1)B;(2)15°.
【解析】
試題分析:(1)在菱形ABCD中,設(shè)AO=x,BO=y,根據(jù)菱形的性質(zhì)得出:求出x、y的值即可求出AC+BD的值.
(2)過D作DG垂直于CF,垂足為G,由正方形的性質(zhì)可得出正方形的四條邊相等,且四個角為直角,三角形BCD為等腰直角三角形,可得出∠BDC與∠DBC都為45°,設(shè)正方形的邊長為1,根據(jù)勾股定理求出BD的長為,即菱形的四條邊為,由DG與FC垂直,且BD與EF平行,可得BD垂直于DG,進而得到∠CDG為45°,即三角形DCG為等腰直角三角形,由DC的長為1,可求出DG為,在直角三角形DFG中,由DG為DF的一半,得到∠F為30°,再根據(jù)菱形的對角相等,可得∠DBE為30°,由∠EBC=∠DBC∠DBE求出度數(shù)即可.
(1)在菱形ABCD中,設(shè)AO=x,BO=y,
根據(jù)菱形的性質(zhì)得出:解得
∴AC+BD=2(x+y)=2×=.
故選B.
(2)過D作DG⊥CF,垂足為G,如圖所示:
∵四邊形ABCD為正方形,
∴∠CBD=∠CDB=45°,∠BCD=90°,
設(shè)正方形ABCD的邊長為1,即AB=BC=CD=AD=1,
∴根據(jù)勾股定理得:BD= ,
∵四邊形BEFD為菱形,
∴BE=EF=DF=BD=,
又BD∥EF,DG⊥FC,
∴BD⊥DG,即∠BDG=90°,
∴∠CDG=∠BDG∠BDC=90°45°=45°,又∠DGC=90°,
∴△DCG為等腰直角三角形,又DC=1,
∴DG=DCsin45°=,
又DF=,
在Rt△DFG中,由DG=DF,
∴∠F=30°,
∴∠DBE=30°,
則∠EBC=∠DBC∠DBE=45°30°=15°.
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x、y的多項式(m﹣2)+(n+3)xy2+3xy﹣5.
(1)若原多項式是五次多項式,求m、n的值;
(2)若原多項式是五次四項式,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將-2,-1,0,1,2,3,4,5,6,7這10個數(shù)分別填寫在五角星中每兩條線的交點處(每個交點處只填寫一個數(shù)),將每一條線上的4個數(shù)相加,共得5個數(shù),設(shè)為a1,a2,a3,a4,a5.
(1)求(a1+a2+a3+a4+a5)的值;
(2)交換其中任何兩位數(shù)的位置后,(a1+a2+a3+a4+a5)的值是否改變?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我區(qū)某中學體育組因高中教學需要本學期購進籃球和排球共80個,共花費5800元,已知籃球的單價是80元/個,排球的單價是50元/個.
(1)籃球和排球各購進了多少個(列方程組解答)?
(2)因該中學秋季開學準備為初中也購買籃球和排球,教學資源實現(xiàn)共享,體育組提出還需購進同樣的籃球和排球共40個,但學校要求花費不能超過2810元,那么籃球最多能購進多少個(列不等式解答)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B是直線m上兩個定點,C是直線n上一個動點,且m∥n.以下說法:
①△ABC的周長不變;
②△ABC的面積不變;
③△ABC中,AB邊上的中線長不變.
④∠C的度數(shù)不變;
⑤點C到直線m的距離不變.
其中正確的有________(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將-2,-1,0,1,2,3,4,5,6,7這10個數(shù)分別填寫在五角星中每兩條線的交點處(每個交點處只填寫一個數(shù)),將每一條線上的4個數(shù)相加,共得5個數(shù),設(shè)為a1,a2,a3,a4,a5.
(1)求(a1+a2+a3+a4+a5)的值;
(2)交換其中任何兩位數(shù)的位置后,(a1+a2+a3+a4+a5)的值是否改變?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點,點A在點B的左側(cè).
(1)求A,B兩點的坐標和此拋物線的對稱軸;
(2)設(shè)此拋物線的頂點為C,點D與點C關(guān)于x軸對稱,求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com