【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
(1)Rt△ADE與Rt△BEC全等嗎?并說明理由;
(2)△CDE是不是直角三角形?并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)矩形的長為a,寬為b(a>0,b>0),則矩形的面積為ab.代數(shù)式xy(x>0,y>0)可以看作是邊長為x和y的矩形的面積.我們可以由此解一元二次方程:x2+x﹣6=0(x>0).具體過程如下:
①方程變形為x(x+1)=6.
②畫四個(gè)邊長為x+1、x的矩形如圖放置;
③由面積關(guān)系求解方程.
∵SABCD=(x+x+1)2,又SABCD=4x(x+1)+12.
∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,
∴(2x+1)2=25,
∵x>0,
∴x=2.
參照上述方法求關(guān)于x的二次方程x2+mx﹣n=0的解(x>0,m>0,n>0).(要求:畫出示意圖,標(biāo)注相關(guān)線段的長度,寫出解題步驟)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角坐標(biāo)平面上的,,,且,,.若拋物線經(jīng)過、兩點(diǎn).
求、的值;
將拋物線向上平移若干個(gè)單位得到的新拋物線恰好經(jīng)過點(diǎn),求新拋物線的解析式;
設(shè)中的新拋物的頂點(diǎn)點(diǎn),為新拋物線上點(diǎn)至點(diǎn)之間的一點(diǎn),以點(diǎn)為圓心畫圖,當(dāng)與軸和直線都相切時(shí),聯(lián)結(jié)、,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象過點(diǎn)(0,3),且與兩坐標(biāo)軸在第一象限所圍成的三角形面積為3,則這個(gè)一次函數(shù)的表達(dá)式為( )
A.y=1.5x+3B.y=1.5x-3C.y=-1.5x+3D.y=-1.5x-3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某洗衣機(jī)在洗滌衣服時(shí),經(jīng)歷了進(jìn)水、清洗、排水、脫水四個(gè)連續(xù)過程,其中進(jìn)水、清洗、排水時(shí)洗衣機(jī)中的水量y(升)與時(shí)間x(分鐘)之間的關(guān)系如折線圖所示,根據(jù)圖象解答下列問題:
(1)洗衣機(jī)的進(jìn)水時(shí)間是______分鐘,清洗時(shí)洗衣機(jī)中的水量是_______升.
(2)進(jìn)水時(shí)y與x之間的關(guān)系式是____________.
(3)已知洗衣機(jī)的排水速度是每分鐘18升,如果排水時(shí)間為2分鐘,排水結(jié)束時(shí)洗衣機(jī)中剩下的水量是____________升.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖E在△ABC的邊AC上,且∠AEB=∠ABC.
⑴求證:∠ABE=∠C;
⑵若∠BAE的平分線AF交BE于F,F(xiàn)D∥BC交AC于D,設(shè)AB=5,AC=8,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過C點(diǎn)的切線,垂足為D,AB的延長線交直線CD于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若BE=2,CE=2,CF⊥AB,垂足為點(diǎn)F.
①求⊙O的半徑;②求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com