【題目】四邊形ABCD的對(duì)角線交于點(diǎn)E,且AE=EC,BE=ED,以AB為直徑的半圓過(guò)點(diǎn)E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.

(2)如圖2,若CD的延長(zhǎng)線與半圓相切于點(diǎn)F,且直徑AB=8.
①△ABD的面積為
的長(zhǎng)

【答案】
(1)解:∵AE=EC,BE=ED,

∴四邊形ABCD是平行四邊形.

∵AB為直徑,且過(guò)點(diǎn)E,

∴∠AEB=90°,即AC⊥BD.

∵四邊形ABCD是平行四邊形,

∴四邊形ABCD是菱形.


(2)16, π
【解析】(2)①連結(jié)OF.

∵CD的延長(zhǎng)線與半圓相切于點(diǎn)F,

∴OF⊥CF.

∵FC∥AB,

∴OF即為△ABD中AB邊上的高.

∴SABD= AB×OF= ×8×4=16,

∵點(diǎn)O是AB中點(diǎn),點(diǎn)E是BD的中點(diǎn),

∴SOBE= SABD=4.②過(guò)點(diǎn)D作DH⊥AB于點(diǎn)H.

∵AB∥CD,OF⊥CF,

∴FO⊥AB,

∴∠F=∠FOB=∠DHO=90°.

∴四邊形OHDF為矩形,即DH=OF=4.

∵在Rt△DAH中,sin∠DAB= = ,

∴∠DAH=30°.

∵點(diǎn)O,E分別為AB,BD中點(diǎn),

∴OE∥AD,

∴∠EOB=∠DAH=30°,

的長(zhǎng)度= = π.

所以答案是:16, π.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用圓周角定理和切線的性質(zhì)定理,掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB為⊙O的直徑,BM為⊙O的切線,點(diǎn)C為射線BM上一點(diǎn),連接AC交⊙O于點(diǎn)D,點(diǎn)E為BC上一點(diǎn).連接AE交半圓于F.
(1)如圖1,若AE平分∠BAC,求證:∠DBF=∠CBF;

(2)如圖2,過(guò)點(diǎn)D作⊙O的切線交BM于N,若DN⊥BM,求證:△ABC為等腰直角三角形;
(3)在(2)的條件下,如圖3,延長(zhǎng)BF交AC于G,點(diǎn)H為AB上一點(diǎn),且BH=2BE,過(guò)點(diǎn)H作AE的垂線交AC于P,連接OG交DN于K,若AP=CG,EF=1,求GK的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過(guò)E作⊙O切線EF交BA的延長(zhǎng)線于F.
(1)如圖1,求證:EF∥AC;

(2)如圖2,OP⊥AO交BE于點(diǎn)P,交FE的延長(zhǎng)線于點(diǎn)M.求證:△PME是等腰三角形;

(3)如圖3,在(2)的條件下:CG⊥AB于H點(diǎn),交⊙O于G點(diǎn),交AC于Q點(diǎn),如圖2,若sinF= ,EQ=5,求PM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】核桃和棗是我省著名的農(nóng)特產(chǎn),它們營(yíng)養(yǎng)豐富,有益人體健康,深受老百姓喜愛(ài)。某超市從農(nóng)貿(mào)批發(fā)市場(chǎng)批發(fā)核桃和棗進(jìn)行零售,批發(fā)價(jià)和零售價(jià)格如下表所示:

名稱

核桃

批發(fā)價(jià)(/)

12

9

零售價(jià)(/)

18

12

請(qǐng)解答下列問(wèn)題.

(1)第一天,該超市從批發(fā)市場(chǎng)批發(fā)核桃和棗共350,用去了3600元錢(qián),求當(dāng)天核桃和棗各批發(fā)多少kg?

(2)第二天,該超市用3600元錢(qián)仍然批發(fā)核桃和棗(批發(fā)價(jià)和零售價(jià)不變),要想將第二天批發(fā)的核桃和棗全部售完后,所獲利潤(rùn)不低于40%,則該超市第二天至少批發(fā)核桃多少kg

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(2,0),點(diǎn)B(0,1),過(guò)點(diǎn)A的直線l垂直于線段AB,點(diǎn)P是直線l上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸,垂足為C,把△ACP沿AP翻折180°,使點(diǎn)C落在點(diǎn)D處.若以A,D,P為頂點(diǎn)的三角形與△ABP相似,則所有滿足此條件的點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)積極創(chuàng)建環(huán)保示范社區(qū),決定在小區(qū)內(nèi)安裝垃圾分類(lèi)的溫馨提示牌和垃圾箱,已知溫馨提示牌的單價(jià)為每個(gè)30元,垃圾箱的單價(jià)為每個(gè)90元,共需購(gòu)買(mǎi)溫馨提示牌和垃圾箱共100個(gè).

(1)若規(guī)定溫馨提示牌和垃圾箱的個(gè)數(shù)之比為1:4,求所需的購(gòu)買(mǎi)費(fèi)用;

(2)若該小區(qū)至多安放48個(gè)溫馨提示牌,且費(fèi)用不超過(guò)6300元,請(qǐng)列舉所有購(gòu)買(mǎi)方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,所對(duì)邊分別是,且,若滿足,則稱為奇異三角形,例如等邊三角形就是奇異三角形.

(1)若,判斷是否為奇異三角形,并說(shuō)明理由;

(2)若,求的長(zhǎng);

(3)如圖2,在奇異三角形中,,點(diǎn)邊上的中點(diǎn),連結(jié)分割成2個(gè)三角形,其中是奇異三角形,是以為底的等腰三角形,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知多項(xiàng)式3m3n22mn32中,四次項(xiàng)的系數(shù)為a,多項(xiàng)式的次數(shù)為b,常數(shù)項(xiàng)為c,且4b、10c3、(a+b)2bc的值分別是點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù),點(diǎn)P從原點(diǎn)O出發(fā),沿OC方向以1單位/s的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在線段CO上向點(diǎn)O勻速運(yùn)動(dòng)(點(diǎn)P、Q分別運(yùn)動(dòng)到點(diǎn)C、O時(shí)停止運(yùn)動(dòng)),兩點(diǎn)同時(shí)出發(fā).

1)分別求4b、10c3(a+b)2bc的值;

2)若點(diǎn)Q運(yùn)動(dòng)速度為3單位/s,經(jīng)過(guò)多長(zhǎng)時(shí)間P、Q兩點(diǎn)相距70

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段AB上時(shí),分別取OPAB的中點(diǎn)EF,試問(wèn)的值是否變化,若變化,求出其范圍:若不變,求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某九年級(jí)制學(xué)校圍繞每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫(xiě)一項(xiàng))的問(wèn)題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:

(1)該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級(jí)共有200名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案