【題目】如圖,拋物線T1:y=-x2-2x+3,T2:y=x2-2x+5,其中拋物線T1與x 軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).P點(diǎn)是x軸上一個(gè)動點(diǎn),過P點(diǎn)并且垂直于x軸的直線與拋物線T1和T2分別相交于N、M兩點(diǎn).設(shè)P點(diǎn)的橫坐標(biāo)為t.

(1)用含t的代數(shù)式表示線段MN的長;當(dāng)t為何值時(shí),線段MN有最小值,并求出此最小值;

(2)隨著P點(diǎn)運(yùn)動,P、M、N三點(diǎn)的位置也發(fā)生變化.問當(dāng)t何值時(shí),其中一點(diǎn)是另外兩點(diǎn)連接線段的中點(diǎn)?

(3)將拋物線T1平移, A點(diǎn)的對應(yīng)點(diǎn)為A'(m-3,n),其中≤m≤,且平移后的拋物線仍經(jīng)過C點(diǎn),求平移后拋物線頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).

【答案】(1)當(dāng)t=0時(shí),MN有最小值為2(2)當(dāng)t為或-1或2時(shí),P、M、N三點(diǎn)其中一點(diǎn)是另外兩點(diǎn)連接線段的中點(diǎn)(3)(,)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,ACB=30°,BC=2 ,ADCABC關(guān)于AC

稱,點(diǎn)EF分別是邊DC、BC上的任意一點(diǎn),且DECF,BE、DF相交于點(diǎn)P,則CP的最小值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A. B兩地果園分別有蘋果30噸和40噸,C. D兩地的農(nóng)貿(mào)市場分別需求蘋果20噸和50噸。已知從A. B兩地到C. D兩地的運(yùn)價(jià)如表:

(1)填空:若從A果園運(yùn)到C地的蘋果為10噸,則從A果園運(yùn)到D地的蘋果為___噸,從B果園運(yùn)到C地的蘋果為___噸,從B果園運(yùn)到D地的蘋果為___噸,總運(yùn)輸費(fèi)為___元;

(2)如果總運(yùn)輸費(fèi)為750元時(shí),那么從A果園運(yùn)到C地的蘋果為多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=(m為常數(shù))的圖象經(jīng)過點(diǎn)A(﹣1,6).

(1)求m的值;

(2)如圖,過點(diǎn)A作直線AC與函數(shù)y=的圖象交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進(jìn)多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列兩個(gè)式子:22×+1,55×+1.給出定義如下:我們稱使等式abab+1成立的一對有理數(shù)a,b為“共生有理數(shù)對”,記為(a,b),數(shù)對(2,),和(5,)都是“共生有理數(shù)對”.

1)數(shù)對(﹣21)和(3,)中是“共生有理數(shù)對”的是  ;

2)若(a,﹣)是“共生有理數(shù)對”,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】右圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為( )

A. 5πcm2 B. 10πcm2 C. 15πcm2 D. 20πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程m為常數(shù))

1)求證:不論m為何值,該方程總有實(shí)數(shù)根;

2)若該方程有一個(gè)根是,求m的值。

查看答案和解析>>

同步練習(xí)冊答案