函數(shù)y=-x2-4x+5(t≤x≤t+1)的最大值關(guān)于t的表達(dá)式為ymax=   
【答案】分析:首先將拋物線y=-x2-4x+5配方成y=-(x+2)2+9的形式,進(jìn)而可以確定對(duì)稱(chēng)軸為x=-2,據(jù)此可以求出其最大值.
解答:解:∵y=-x2-4x+5=-(x+2)2+9,對(duì)稱(chēng)軸為x=-2,
當(dāng)t≤x≤t+1包含x=-2時(shí),
則t<-2且t+1≥-2,
-3≤t≤-2時(shí),ymax=9,
當(dāng)t≤x≤t+1<-2,即t<-3時(shí),ymax=-(t+1+2)2+9=-t2-6t;
當(dāng)-2<t≤x≤t+1時(shí),ymax=-t2-4t+5
∴ymax=,
故答案為:ymax=
點(diǎn)評(píng):本題考查了二次函數(shù)的最值,分段函數(shù),綜合知識(shí),二次函數(shù)的圖象,二次函數(shù)的性質(zhì),解題的關(guān)鍵是利用配方確定二次函數(shù)的對(duì)稱(chēng)軸.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+4x+5的圖象交x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的右邊),交y軸于點(diǎn)C,頂點(diǎn)為P.點(diǎn)M是射線OA上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合)精英家教網(wǎng),點(diǎn)N是x軸負(fù)半軸上的一點(diǎn),NH⊥CM,交CM(或CM的延長(zhǎng)線)于點(diǎn)H,交y軸于點(diǎn)D,且ND=CM.
(1)求證:OD=OM;
(2)設(shè)OM=t,當(dāng)t為何值時(shí)以C、M、P為頂點(diǎn)的三角形是直角三角形?
(3)問(wèn):當(dāng)點(diǎn)M在射線OA上運(yùn)動(dòng)時(shí),是否存在實(shí)數(shù)t,使直線NH與以AB為直徑的圓相切?若存在,請(qǐng)求出相應(yīng)的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知四個(gè)互不相等的實(shí)數(shù)x1,x2,x3,x4,其中x1<x2,x3<x4
(1)請(qǐng)列舉x1,x2,x3,x4從小到大排列的所有可能情況;
(2)已知a為實(shí)數(shù),函數(shù)y=x2-4x+a與x軸交于(x1,0),(x2,0)兩點(diǎn),函數(shù)y=x2+ax-4與x軸交于(x3,0),(x4,0)兩點(diǎn).若這四個(gè)交點(diǎn)從左到右依次標(biāo)為A,B,C,D,且AB=BC=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=x2-4x+3的圖象交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))拋物線y=x2-4x+3交y軸于點(diǎn)C.
(1)求線段BC所在直線的解析式.
(2)又已知反比例函數(shù)y=
kx
與BC有兩個(gè)交點(diǎn)且k為正整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=x2-4x-a與x軸有交點(diǎn),則a的范圍
a≥-4
a≥-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將二次函數(shù)y=ax2-bx+5的圖象向上平移3個(gè)單位,再向左平移1個(gè)單位,便得到二次函數(shù)y=x2-4x+3的圖象,則a-b的值等于
-5
-5

查看答案和解析>>

同步練習(xí)冊(cè)答案