【題目】商場將一批學生書包按成本價提高50%后標價,又按標價的80%優(yōu)惠賣出,每個的售價是72元.每個這種書包的成本價是多少元?利潤是多少元?利潤率是多少?

【答案】成本價是60元,利潤是12元,利潤率是20%.

【解析】

設每個這種書包的成本價是x元,則每個書包按成本價提高50%后標價為x×1+50%)元,又按標價的80%優(yōu)惠賣出得其售價為x×1+50%×80%元,根據(jù)題意列出方程并解方程;所得利潤為售價減去成本,而利潤率則為利潤除以成本價.

解:設每個這種書包的成本價是x元,則每個書包的售價為x×1+50%×80%元.

由題意,得x×1+50%×80%72

解得x60

利潤726012(元),

利潤率為×100%20%

故每個這種書包的成本價是60元,利潤是12元,利潤率是20%

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點順時針方向旋轉得到△ADE,連接BD,CE交于點F,求證:△AEC≌△ADB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的邊AD與經過A、B、C三點的⊙O相切

(1)求證:弧AB=弧AC
(2)如圖2,延長DC交⊙O于點E,連接BE,sin∠E= ,求tan∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=120°,點E、F分別在邊AB、BC上,△BEF與△GEF關于直線EF對稱,點B的對稱點是G,且點G在邊AD上,若EG⊥AC,AB=2,則FG的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC為⊙O的直徑,AB=BD,BD交AC于F,BE∥AD交AC的延長線于E點
(1)求證:BE為⊙O的切線;
(2)若AF=4CF,求tan∠E.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線SN⊥直線WE,垂足是點O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東m°,射線OC的方向是北偏東n°,且m°的角與n°的角互余.

(1)寫出圖中與∠BOE互余的角:   

(2)若射線OA是∠BON的角平分線,探索∠BOS與∠AOC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB是⊙O的兩條切線,A、B是切點,PA= OA,陰影部分的面積為6π,則⊙O的半徑長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線 AB 分別交 x 軸、y 軸于點Aa0)點 B0,b),且a、b滿足a2+4a+4+|2a+b|0

1a ;b

(2)點 P 在直線AB的右側,且APB=45°

①若點Px軸上,則點P的坐標為 ;

ABP 為直角三角形,求點P的坐標;

(2)如圖2,在(2)的條件下,點P在第四象限,BAP=90°,APy軸交于點M,BPx軸交于點N,連接MN,求證:MP平分BMN的一個外角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點,的平分線,,

1)若,請求出的度數(shù);

2平分嗎?為什么?

查看答案和解析>>

同步練習冊答案