(2013•蒼梧縣二模)如圖,△ABC中,DE∥BC,DE分別交邊AB、AC于D、E兩點,若AD:AB=1:3,則△ADE與四邊形DBCE的面積比為
1:8
1:8
分析:由DE∥BC,即可得△ADE∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得S△ADE:S△ABC的值,繼而求得△ADE與四邊形DBCE的面積比.
解答:解:∵DE∥BC,
∴△ADE∽△ABC,
∵AD:AB=1:3,
∴S△ADE:S△ABC=1:9,
∴S△ADE:S四邊形DBCE=1:8.
故答案為:1:8.
點評:此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握相似三角形面積比等于相似比的平方定理的應(yīng)用是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蒼梧縣二模)計算:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蒼梧縣二模)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為C(1,4),交x軸于A,B兩點,交y軸于點D,其中點B的坐標(biāo)為(3,0)

(1)求拋物線的解析式;
(2)如圖2,設(shè)E是拋物線上在第一象限內(nèi)的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)如圖3,在拋物線上是否存在一點T,過點T作x軸的垂線,垂足為點M,過點M作MN∥BD,交線段AD于點N,連接MD,使△DNM∽△BMD?若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蒼梧縣二模)如圖,已知CD是⊙O的直徑,AC⊥CD,垂足為C,弦DE∥OA,直線AE,CD相交于點B.
(1)求證:直線AB是⊙O的切線;
(2)如果AC=1,BE=2,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案