【題目】如圖,在RtABC中,∠ACB90°,AD為∠CAB的平分線(xiàn),點(diǎn)OAB上,⊙O經(jīng)過(guò)點(diǎn)A,D兩點(diǎn),與AC,AB分別交于點(diǎn)EF

1)求證:BC與⊙O相切;

2)若AC8,AF10,求ADBC的長(zhǎng).

【答案】1)見(jiàn)解析;(2AD, .

【解析】

1)連接OD.根據(jù)等腰三角形的性質(zhì)得到∠ODA=∠OAD.根據(jù)角平分線(xiàn)的定義得到∠CAD=∠BAD.根據(jù)平行線(xiàn)的性質(zhì)得到∠ODB=∠ACB90°,于是得到結(jié)論;

2)連接DF.根據(jù)圓周角定理得到∠ADF90°,根據(jù)相似三角形的性質(zhì)得到AD,由勾股定理得到CD4.根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

1)證明:連接OD

OAOD,

∴∠ODA=∠OAD

又∵AD平分∠CAB

∴∠CAD=∠BAD

∴∠ODA=∠CAD,

ODAC

∴∠ODB=∠ACB90°,

ODBC,

BC與⊙O相切;

2)解:連接DF

AF為直徑,

∴∠ADF90°,

∴∠ACD=∠ADF

又∵∠CAD=∠FAD,

∴△CAD∽△DAF

,

AD2CAAF80

AD,

RtACD中,CD4

ODAC

∴△BOD∽△BAC,

,

,

BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】線(xiàn)段AB在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,端點(diǎn)A、B為格點(diǎn)(即網(wǎng)格線(xiàn)的交點(diǎn))

(1)線(xiàn)段AB的長(zhǎng)度為________;

(2)在網(wǎng)格中找出一個(gè)格點(diǎn)C,使得ABC是以AB為直角邊的等腰直角三角形,請(qǐng)畫(huà)出ABC;

(3)在網(wǎng)格中找出一個(gè)格點(diǎn)D,使得ABD是以AB為斜邊的等腰直角三角形,請(qǐng)畫(huà)出ABD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點(diǎn)D,BC是⊙O的切線(xiàn),EBC的中點(diǎn),連接AE、DE

1)求證:DE是⊙O的切線(xiàn);

2)設(shè)△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S25S1,求tanBAC的值;

3)在(2)的條件下,若AE3,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,∠BAD的平分線(xiàn)交BC于點(diǎn)E,∠ABC的平分線(xiàn)交AD于點(diǎn)F

1)求證:四邊形ABEF是菱形;

2)若AE6,BF8,平行四邊形ABCD的面積是36,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)EF分別在CD,BC上,且∠EAF=∠DAE+∠BAF,則的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四條直線(xiàn)l1y1x,l2y2x,l3y3=﹣x,l4y4=﹣xOA11,過(guò)點(diǎn)A1A1A2x軸交l1于點(diǎn)A2,再過(guò)點(diǎn)A2A2A3l1,交l2于點(diǎn)A3,再過(guò)點(diǎn)A3A3A4l2y軸于點(diǎn)A4……,則點(diǎn)A2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進(jìn)行綠化,為了綠化環(huán)境又節(jié)省成本.如圖,已知矩形的邊BC200m,邊ABa m(a為不大于200的常數(shù)),四邊形MNPQ的頂點(diǎn)在矩形的邊上,且AMBNCPDQx m,設(shè)四邊形MNPQ的面積為S m2

(1)S關(guān)于x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;

(2)a120,求S的最小值,并求出此時(shí)x的值;

(3)a200,且每平方米綠化費(fèi)用需50元,則此時(shí)綠化最低費(fèi)用為______萬(wàn)元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市某幼兒園六一期間舉行親子游戲,主持人請(qǐng)三位家長(zhǎng)分別帶自己的孩子參加游戲,主持人準(zhǔn)備把家長(zhǎng)和孩子重新組合完成游戲,A、BC分別表示三位家長(zhǎng),他們的孩子分別對(duì)應(yīng)的是a、b、c

1)若主持人分別從三位家長(zhǎng)和三位孩子中各選一人參加游戲,恰好是A、a的概率是多少(直接寫(xiě)出答案)

2)若主持人先從三位家長(zhǎng)中任選兩人為一組,再?gòu)暮⒆又腥芜x兩人為一組,四人共同參加游戲,恰好是兩對(duì)家庭成員的概率是多少.(畫(huà)出樹(shù)狀圖或列表)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC的直徑,AB相切于點(diǎn)A,四邊形ABCD是平行四邊形,BC于點(diǎn)E

判斷直線(xiàn)CD的位置關(guān)系,并說(shuō)明理由;

的半徑為5cm,弦CE的長(zhǎng)為8cm,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案