【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°30°,則該電線桿PQ的高度( 。

A. 6+2 B. 6+ C. 10 D. 8+

【答案】A

【解析】

延長PQ交直線AB于點(diǎn)E,設(shè)PE=xm,在RtAPERtBPE中,根據(jù)三角函數(shù)利用x表示出AEBE,根據(jù)AB=AE-BE即可列出方程求得x的值,然后在RtBQE中利用三角函數(shù)求得QE的長,則PQ的長度即可求解.

解:延長PQ交直線AB于點(diǎn)E,設(shè)PE=xm.

RtAPE,A=45°

AE=PE=xm,

∵∠PBE=60°

∴∠BPE=30°,

RtBPE中,

BE=PE=xm,

AB=AEBE=6m,

xx=6,

解得:x=9+3,

BE=3+3 (m)

RtBEQ,

QE=BE=(3+3)= 3+(m),

PQ=PEQE=9+3(3+)=6+2 (m).

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,BOM上一點(diǎn),BAONA,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°CE,連結(jié)BE,若AB=4,則BE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量白塔的高度AB,在D處用高為1.5米的測角儀 CD,測得塔頂A的仰角為42°,再向白塔方向前進(jìn)12米,又測得白塔的頂端A的仰角為61°,求白塔的高度AB.(參考數(shù)據(jù)sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為

)請直接寫出袋子中白球的個(gè)數(shù).

)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn)和點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P為其頂點(diǎn),對稱軸lx軸交于點(diǎn)D,拋物線上CE兩點(diǎn)關(guān)于對稱軸l對稱.

求拋物線的函數(shù)表達(dá)式;

點(diǎn)G是線段OC上一動(dòng)點(diǎn),是否存在這樣的點(diǎn)G,使相似,若存在,請求出點(diǎn)G坐標(biāo),若不存在請說明理由.

平移拋物線,其頂點(diǎn)P在直線上運(yùn)動(dòng),移動(dòng)后的拋物線與直線的另一交點(diǎn)為M,與原對稱軸l交于點(diǎn)Q,當(dāng)是以PM為直角邊的直角三角形時(shí),請寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是關(guān)于的方程的一個(gè)實(shí)數(shù)根,并且這個(gè)方程的兩個(gè)實(shí)數(shù)根恰好是等腰三角形的兩條邊長,則的周長為(

A. 6 B. 8 C. 10 D. 8或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷,在一次購物中,張華和李紅都想從微信、支付寶、銀行卡現(xiàn)金四種支付方式中選一種方式進(jìn)行支付.

(1)張華用微信支付的概率是______

(2)請用畫樹狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中微信、支付寶銀行卡、現(xiàn)金分別用字母“A”“B”“C”“D”代替)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(12,0),O為坐標(biāo)原點(diǎn),P是線段OA上任一點(diǎn)(不含端點(diǎn)O、A),二次函數(shù)y1的圖象過P、O兩點(diǎn),二次函數(shù)y2的圖象過P、A兩點(diǎn),它們的開口均向下,頂點(diǎn)分別為B、C,射線OB與射線AC相交于點(diǎn)D.則當(dāng)OD=AD=9時(shí),這兩個(gè)二次函數(shù)的最大值之和等于(  )

A. 8 B. 3 C. 2 D. 6

查看答案和解析>>

同步練習(xí)冊答案